
M A N N I N G

Bina Ramamurthy

IN ACTION

Blockchain in Action

BINA RAMAMURTHY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: Kyle Smith
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Keir Simpson
Proofreader: Melody Dolab

Technical proofreader: Valentin Crettaz
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617296086
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 I dedicate this book to my grandmother, Thanjavur Avva,
for her unconditional love and affection to me,

and compassion and generosity to everyone.

v

brief contents
PART 1 GETTING STARTED WITH BLOCKCHAIN PROGRAMMING1

1 ■ Blockchain basics 3

2 ■ Smart contracts 22

3 ■ Techniques for trust and integrity 54

4 ■ From smart contracts to Dapps 79

PART 2 TECHNIQUES FOR END-TO-END DAPP DEVELOPMENT............103

5 ■ Security and privacy 105

6 ■ On-chain and off-chain data 129

7 ■ Web3 and a channel Dapp 162

8 ■ Going public with Infura 193

PART 3 A ROADMAP AND THE ROAD AHEAD...................................225

9 ■ Tokenization of assets 227

10 ■ Testing smart contracts 249

11 ■ A roadmap to Dapp development 267

12 ■ Blockchain: The road ahead 292

vii

contents
Preface xv
Acknowledgments xvii
About this book xviii
About the author xxii
About the cover illustration xxiii

PART 1 GETTING STARTED WITH BLOCKCHAIN PROGRAMMING....1

1 Blockchain basics 3
1.1 From Bitcoin to blockchain 4

1.2 What is a blockchain? 6

1.3 Blockchain programming 8
Decentralized infrastructure 8 ■ Distributed ledger technology 11
Disintermediation protocol 14 ■ Trust enabler 15

1.4 Motivating scenarios 16
Automatic and consistent data collection 17 ■ Timely information
sharing 17 ■ Verifiable compliance 18 ■ Auditable actions for
provenance 18 ■ Guidance for governance 18 ■ Attribution of
actions 18 ■ Pandemic management 19

1.5 Retrospective 19

1.6 Summary 20

CONTENTSviii

2 Smart contracts 22
2.1 The concept of a smart contract 23

Bitcoin transactions versus smart contract transactions 24 ■ What
does a smart contract do? 25

2.2 Design of a smart contract 25
A use case diagram for the counter 26 ■ Data assets, peer
participants, roles, rules, and transactions 27 ■ From class
diagram to contract diagram 28

2.3 Development of a smart contract code 30
Solidity language 30 ■ Smart contract code for Counter 30

2.4 Deploying and testing the smart contract 32
The Remix IDE 32 ■ Deployment and testing 34 ■ Key
takeaways 35

2.5 What makes a blockchain contract smart? 36

2.6 Decentralized airline system use case 38
ASK definition 38 ■ Sequence of operations 39

2.7 Airlines smart contract 41
Peer participants, data assets, roles, rules, and transactions 42
Airlines smart contract code 44 ■ ASK smart contract deployment
and testing 46

2.8 Smart contract design considerations 52

2.9 Best practices 52

2.10 Summary 53

3 Techniques for trust and integrity 54
3.1 Essentials of trust and integrity 55

Trust 55 ■ Integrity 57

3.2 Digital democracy problem 58
Designing a solution 58 ■ Use case diagram 58 ■ Incremental
development of code 59 ■ Users, assets, and transactions 60
Finite state machine diagram 62 ■ Trust intermediation 64
Defining and using modifiers 65 ■ Contract diagram including
modifiers 66 ■ Putting it all together 67

3.3 Testing 70
Positive tests 71 ■ Negative tests 72

3.4 Using modifiers, require(), and revert() 73

3.5 Assert() declarations 74

CONTENTS ix

3.6 Best practices 76

3.7 Retrospective 77

3.8 Summary 77

4 From smart contracts to Dapps 79
4.1 Dapp development using Truffle 81

The development process 82 ■ Installing Truffle 82
Building the Dapp stack 84

4.2 Install Ganache test chain 85

4.3 Develop the smart contract 86
Create a project folder 87 ■ Add smart contract and compile 89
Configure blockchain network 90 ■ Deploy the smart contract 90

4.4 Develop and configure the web application 91
Develop ballot-app 92 ■ Launch the ballot-app 94 ■ Install
MetaMask wallet 95 ■ Interact with Ballot-Dapp 97
Connect web client to smart contract 99

4.5 Retrospective 100

4.6 Best practices 101

4.7 Summary 102

PART 2 TECHNIQUES FOR END-TO-END DAPP DEVELOPMENT ..103

5 Security and privacy 105
5.1 Cryptography basics 107

Symmetric key cryptography 107 ■ Asymmetric key cryptography 108

5.2 The relevance of public-key cryptography to blockchain 109
Generating Ethereum addresses 109 ■ Transaction signing 110
Deploying smart contracts on Ropsten 110 ■ Using the private key
in mnemonic form 111 ■ Populating a blockchain wallet 112
Deploying and transacting on Ropsten 113

5.3 Hashing basics 116
Digital signing of documents 117 ■ Hashed data on distributed
ledger 117 ■ Hashes in Ethereum block header 117
Solidity hashing functions 118

5.4 Application of hashing 119
Blind auction design 119 ■ Blind auction smart contract 120
Privacy and security aspects 121 ■ Testing the BlindAuction
contract 124 ■ Test plan 125

CONTENTSx

5.5 Retrospective 127

5.6 Best practices 127

5.7 Summary 127

6 On-chain and off-chain data 129
6.1 On-chain data 131

6.2 Blind auction use case 133
On-chain event data 133 ■ Blind auction with events 134
Testing with the web UI 138 ■ Accessing on-chain data using the
web3 API 144

6.3 Off-chain data: External data sources 145

6.4 ASK airline system 146
ASK concept 147 ■ Airlines smart contract 150 ■ ASK
on-chain data 152 ■ ASK off-chain data 153 ■ ASK Dapp
development process 153 ■ ASK web user interface 154
Putting it all together 156 ■ Interacting with ASK Dapp 156

6.5 Retrospective 159

6.6 Best practices 160

6.7 Summary 161

7 Web3 and a channel Dapp 162
7.1 Web3 API 163

Web3 in Dapp stack 163 ■ Web3 packages 165

7.2 The channel concept 166

7.3 Micropayment channel 167

7.4 Micropayment channel use case 168
Traditional banking solution 169 ■ Users and roles 172
On-chain and off-chain operations 173 ■ MPC smart contract
(MPC-contract) 175 ■ MPC application development
(MPC-app) 178 ■ MPC sequence diagram 181
Demonstration of MPC execution 182 ■ Accessing the web3
provider 187 ■ Extensions of MPC 189 ■ The relevance of
the micropayment channel 190 ■ Other web3 packages of
interest 190

7.5 Retrospective 191

7.6 Best practices 191

7.7 Summary 192

CONTENTS xi

8 Going public with Infura 193
8.1 Nodes and networks 194

8.2 Infura blockchain infrastructure 195

8.3 Going public with Infura 196
Blockchain node as a service 196

8.4 End-to-end process for public deployment 198
Account generation and management 199 ■ Choosing a network
and importing accounts 200 ■ Collecting ether from faucets 201
Creating blockchain nodes on Infura 203 ■ Installing
HDWalletProvider 204 ■ Configuring and deploying the smart
contract 204 ■ Configuring and deploying the web
application 205

8.5 Deploying BlindAuction-Dapp on Infura 206
Setting up the blind auction environment 206 ■ Decentralized
participants 207 ■ Configure and deploy the beneficiary
account 208 ■ Configure and deploy bidders 211 ■ Interact
with deployed blind auction Dapp 212

8.6 Deploying MPC-Dapp on Infura 215
Setting up the MPC environment 215 ■ Configure and deploy the
organizer 217 ■ Configure and deploy the worker 220

8.7 Retrospective 222

8.8 Best practices 222

8.9 Summary 223

PART 3 A ROADMAP AND THE ROAD AHEAD225

9 Tokenization of assets 227
9.1 Ethereum standards 228

Ethereum improvement proposal 229 ■ ERC20 token
standard 229 ■ Fungible and non-fungible tokens 231

9.2 RES4: Non-fungible real estate token 233
Use case diagram 233 ■ Contract diagram 234 ■ RES4
ERC721-compliant token 235 ■ RES4 Dapp 237 ■ Interaction
with RES4 Dapp 239

9.3 Retrospective 246

9.4 Best practices 247

9.5 Summary 247

CONTENTSxii

10 Testing smart contracts 249
10.1 Importance of testing smart contracts 250

Types of testing 250 ■ Language choice for test programs 251

10.2 Testing counter smart contract 251
Writing counter test script 252 ■ Positive and negative tests 255
Running the test script 255

10.3 Testing ballot smart contract 257
Writing the ballot test script 257 ■ Executing the ballot test
script 258 ■ Describe() and it() test functions 259

10.4 Recap writing of test script 260

10.5 The blind auction test script 260
Analysis of describe() and it() code 262 ■ Executing the blind
auction test script 263 ■ Full auction run 264

10.6 Retrospective 265

10.7 Best practices 265

10.8 Summary 266

11 A roadmap to Dapp development 267
11.1 Motivating scenario: Educational credentialing 268

11.2 The roadmap 269

11.3 Problem description 270
Context for the DCC application 270 ■ Design choices 271

11.4 Analysis and design 272
Operation flow and finite state machine 272 ■ Contract
diagram 273

11.5 Developing the smart contract 274
Data structures 274 ■ Events 274 ■ Modifiers 275
Functions 275

11.6 Local deployment 280

11.7 Automated testing using truffle 280

11.8 Developing the web application 282
UI design 283 ■ Coding the app.js 285

11.9 Testing the DCC-Dapp 285

11.10 Public deployment 286
Deployment on Ropsten-Infura 287 ■ Create web-client for
distribution 289

CONTENTS xiii

11.11 Retrospective 290

11.12 Best practices 290

11.13 Summary 291

12 Blockchain: The road ahead 292
12.1 Decentralized identity 293

12.2 Self-managed identity 293

12.3 Consensus and integrity 296
Proof of work 297 ■ Proof of stake 297 ■ Byzantine fault-
tolerant consensus 298

12.4 Scalability 298

12.5 Scalability solutions 299
Side channel 299 ■ Block size 300 ■ Network speed 300

12.6 Privacy 300

12.7 Public, private, and permissioned networks 300

12.8 Confidentiality 302
Open information 302 ■ A solution 303

12.9 Security 303

12.10 Securing it with cryptocurrency 305

12.11 Accessing off-chain data (Oracles) 306

12.12 From foundations to practical systems 307

12.13 Looking ahead 309

12.14 Best practices 310

12.15 Retrospective 310

12.16 Summary 311

appendix A UML blockchain design models 313
appendix B Design principles 321

index 323

xv

Preface
I’m fortunate to have been a computer scientist during an era of phenomenal
advancement in computing, from integrated chips to the internet. I have designed
and developed a wide range of systems, from a dot-matrix printer driver to algorithms
for fault tolerance in distributed systems. I have programmed in a variety of high-level
languages, from PL/1 to Python. All these years, I have also been an educator, teach-
ing courses on the leading edge of technology, from grid computing to data science.
And of course, my current passion and fascination is blockchain technology.

 I first heard about Bitcoin around 2013, but ignored it as being yet another attempt
at cryptocurrency. In 2016, I went back to explore Bitcoin for its underlying technol-
ogy: the blockchain. I searched for more information on blockchain, of course, but
could not find much. At a local meetup in Buffalo on a cold January night in 2016, one
of the speakers showed a few YouTube videos on the magic of the blockchain’s distrib-
uted ledger. That was my “Aha!” moment. I was amazed. I went on to read the Bitcoin
white paper; then I dabbled with open source blockchain code with Eris and (later)
Monax. In the summer of 2017, I taught blockchain in a course on Emerging Technol-
ogies. This course was held at Amrita University, Coimbatore, India, for a select group
of automotive engineers. I spent the next year (August 2017–May 2018) producing and
releasing a four-course MOOC specialization, which is still running, with more than
140,000 enrollees from all over the world.

 I had generated an enormous amount of content, video, original diagrams, and
about 220 pages of script for the Coursera video production. I decided to turn the mate-
rial generated into a book. Then, in the summer of 2018, I got a call from a Manning

PREFACExvi

technical editor and began this book project: Blockchain in Action. The project took two
years to complete. I realize that a print book project with hands-on examples is different
from a MOOC—much more complex and challenging. But here it is: the completed
product. I enjoyed every minute I spent writing this book, and the effort was worth it.
I liked thinking about blockchain concepts, exploring them, discovering useful prob-
lems to solve, and then describing them to an audience that is not in front of me.

 Because blockchain is an emerging technology, few resources are available to help
practitioners get started with application development in this area. This book
addresses that need. This book covers end-to-end development of blockchain-based
Dapp. I chose to use the Ethereum blockchain platform because its code is open
source. Tools such as the Solidity compiler for smart contracts, the Remix IDE for
exploration, the Truffle suite of tools for Dapp development and testing, the test
chains Ganache and Ropsten, Infura for cloud deployment of smart contracts, and
the MetaMask wallet have worked well for my team for the past four years. These tools
work in unison to provide seamless learning as well as a prototyping environment.

 I hope you enjoy reading the book as much as I did creating its content.

xvii

Acknowledgments
I’d like to thank my family for supporting me through this challenging project, espe-
cially my husband, Kumar, for his encouragement and unwavering support through
the years. I also would like to thank our daughters Nethra and Nainita for being my
cheerleaders throughout this project.

 Next, I’d like to acknowledge the team at Manning: Christina Taylor, my develop-
ment editor; Deirdre Hiam, my project editor; Keir Simpson, my copy editor; Melody
Dolab, my proofreader; Kyle Smith, my technical development editor; Ivan Martinović,
my review editor; and the reviewers, whose feedback made this contents of this book
useful and technically sound: Alessandro Campeis, Angelo Costa, Attoh-Okine Nii,
Borko Djurkovic, Christophe Boschmans, Danny Chin, David DiMaria, Frederick Schil-
ler, Garry Turkington, Glenn Swonk, Hilde Van Gysel, Jose San Leandro, Krzysztof
Kamyczek, Luis Moux, Michael Jensen, Noreen Dertinger, Richard B. Ward, Ron
Lease, Sambasiva Andaluri, Sheik Uduman Ali M, Shobha Iyer, Tim Holmes, Victor
Durán, and Zalán Somogyváry. Special thanks to the technical proofreader, Valentin
Crettaz, who ran the code and gave me some valuable feedback on the Dapps and
token standards.

 I thank all my students and research team members, who have been my source of
inspiration with their relentless eagerness to learn about blockchain.

xviii

About this book
Blockchain in Action is a comprehensive resource for designing and developing
blockchain-based decentralized applications (Dapps). The resources in this book will
help you get started with smart contracts and blockchain application development.
The book provides enough details to help you understand blockchain without going
into theoretical material.

 The design and development of smart contracts and Dapps are illustrated by seven
applications, each focusing on a certain aspect of blockchain. Several essential tools
(Remix, Ganache, MetaMask, Truffle, Ropsten, and Infura) and techniques (encryp-
tion and digital signing) are introduced to demonstrate the development and deploy-
ment of Dapps on the Ethereum test chain. The core ideas of blockchain—trust and
integrity, security and privacy, on-chain and off-chain data, and operations—are cov-
ered in detail with examples. The blockchain concepts are explained with more than
150 annotated figures and screenshots.

 The codebase provided for the six fully developed Dapps is a valuable resource for
blockchain application developers. The development of smart contracts and Dapps is
explained in an incremental fashion. A standard directory structure and single-page
web UI help you quickly configure, migrate, and transact with the Dapps. You may find
some of the chapters to be lengthy, because a new blockchain concept is introduced
with a Dapp and explained further with a second Dapp. Special techniques (such as off-
chain and on-chain data), design principles, and best practices round up the explora-
tion to offer a clear roadmap to robust smart contract and Dapp development.

ABOUT THIS BOOK xix

Who should read this book
Blockchain in Action is for developers who want to learn about blockchain technology
and ‘develop smart contracts and decentralized applications. Any programmer, from
beginner to advanced, who wants to get started with blockchain programming can do
that by reading and running the applications discussed in the book. Business profes-
sionals and practitioners who wish to have an overview of the special use cases of
blockchain can learn from the diverse applications and Dapps described. This book is
ideal for educators who are looking for a textbook to teach blockchain in their under-
graduate or graduate courses. Also, a self-learner, such as a high-school student with
some programming background, should be able to learn blockchain programming by
reading this book and practicing the examples given.

How this book is organized: A roadmap
The book has three parts that cover 12 chapters.

 Part 1 (chapters 1–4) covers blockchain basics and the design and development of
smart contracts.

 Chapter 1 introduces the 3 Ds of blockchain—decentralization, disintermediation,
and distributed immutable ledger—and provides a high-level conceptual view of a
blockchain.

 Chapter 2 is a gentle introduction to smart contracts on the Ethereum blockchain,
applying design principles to develop smart contracts, code them with the Solidity lan-
guage, deploy them in a web-based Remix integrated development environment, and
transact with them. Smart contracts for a decentralized counter (Counter.sol) and an
airline consortium (ASK.sol) are developed.

 Chapter 3 is about techniques for adding trust and integrity to the smart contract
code. A ballot smart contract (Ballot.sol) representing voting in a digital democracy is
introduced and developed in incremental steps.

 Chapter 4 introduces the design and development of a decentralized application
(Dapp) with smart contract logic and a web-based user interface. A Node.js-based
Truffle suite of tools is introduced for developing and running the smart contract and
the web application. The Ballot application (Ballot-Dapp) is used to illustrate Truffle-
based development steps and deployment on a local Ganache test chain.

 Part 2 (chapters 5–8) is about end-to-end Dapp development, with additional
blockchain-specific features such as on-chain data, security, and privacy.

 Chapter 5 introduces security and privacy in the context of blockchain program-
ming. Cryptography and hashing algorithms and techniques are discussed at a high
level. The concepts are illustrated by means of a blind auction smart contract
(BlindAuction.sol).

 Chapter 6 introduces the concept of on-chain and off-chain data, which is unique to
blockchain programming. The blind auction and ASK smart contracts are extended
into Dapps (BA-Dapp, ASK-Dapp) to demonstrate development with on-chain and off-
chain data. Defining, emitting, and accessing blockchain events and logs are illustrated.

ABOUT THIS BOOKxx

 Chapter 7 focuses on the web3 API of Ethereum that enables web applications to
access the underlying blockchain services. The blockchain side-channel concept is
introduced to illustrate the use of web3 in a micropayment channel (MPC) applica-
tion for massive plastics cleanup (MPC-Dapp).

 Chapter 8 discusses deploying the smart contracts developed on a public cloudlike
infrastructure called Infura. Infura is a web3 provider, and a gateway to public block-
chains such as Ropsten (mainnet and IPFS). Public deployment on Infura and Rop-
sten is illustrated by deploying MPC and blind auction smart contracts.

 Part 3 (chapters 9–12) is about expanding your view of the Ethereum Dapps eco-
system with tokens, Ethereum standards, automated testing, and a roadmap for real-
world application development.

 Chapter 9 is about the tokenization of digital assets. A RES4-Dapp, a real estate
token, is developed based on the Ethereum standard for non-fungible token ERC721.

 Chapter 10 is fully dedicated to writing test scripts and running them by using Truf-
fle’s JS-based testing frameworks. Automated test script writing is illustrated by three
smart contracts already discussed in the book: counter, ballot, and blind auction.

 Chapter 11 provides an end-to-end roadmap of all the concepts, tools, and tech-
niques discussed so far and brings them together in an application for educational
credentialing: DCC-Dapp.

 Chapter 12 reviews the road ahead, which is strewn with challenges, and explores
the fantastic opportunities for you to contribute.

 Two appendices are provided to help you with the design process.
 Appendix A offers a refresher on design representation using Unified Modeling

Language (UML). It illustrates structural, behavioral, and interaction modeling and
diagrams that are used in the design of smart contracts.

 Appendix B captures the design principles introduced in the book for guiding
blockchain application development.

 In general, a reader should start with chapter 1 and move sequentially through chap-
ter 8. The chapters in part 3 can be explored in any order of interest. Chapter 10 (on
testing), for example, can be read any time after chapter 5. I encourage you to do so.

 A developer who wants to be proficient in smart contract design and Dapp devel-
opment should try to follow along with the code examples in the chapters and learn
from them.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. There are six fully working Dapps, along with numerous
pieces of code and smart contracts to explain various concepts. In many listings within
the book, some lines are represented by … (ellipsis) for brevity when the code is
lengthy, but the complete code is available in the codebase accompanying the book.
Code annotations accompany many of the listings, highlighting important concepts.

ABOUT THIS BOOK xxi

 Source code for the examples in this book is available for download from the pub-
lisher’s website at https://www.manning.com/books/blockchain-in-action.

liveBook discussion forum
Purchase of Blockchain in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/book/blockchain-in-action/welcome/v-8. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
I teach a blockchain course for undergraduates and graduates, using this book as a text.
You can follow the happenings in this course and review the lecture presentations,
slides, and other exercises at my website: https://www.cse.buffalo.edu/~bina/cse426.

https://www.manning.com/books/blockchain-in-action
https://livebook.manning.com/book/blockchain-in-action/welcome/v-8
https://www.cse.buffalo.edu/~bina/cse426
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

xxii

About the author
Dr. Bina Ramamurthy is a Teaching Professor in the Department of Computer Science
and Engineering, University at Buffalo, Buffalo, New York. In 2019, she was awarded the
State University of New York (SUNY) Chancellor’s Award for excellence in teaching.

 She is the director of Blockchain Thinklab at the University at Buffalo. In the sum-
mer of 2018, she launched a four-course blockchain specialization on the Coursera
platform for a worldwide audience. The suite of courses has been ranked number 1
among the best courses on blockchain technology and has enrolled more than
140,000 learners from all over the world.

 She has been the principal investigator on four National Science Foundation
(NSF) grants and a co-investigator on six Instructional Innovative Instructional
Technology Grants (IITG) from SUNY. She has given numerous invited presentations
at prominent conferences in the areas of data-intensive and big data computing. She
has also been on the program committees of prestigious conferences, including the
High-Performance Computing Conference and Special Interest Group in Computer
Science Education (SIGCSE).

 Bina Ramamurthy received a BE (Honors) from Guindy Engineering College,
Madras, India; an MS in Computer Science from Wichita State University, Kansas; and
a PhD in Electrical Engineering from the University at Buffalo.

xxiii

About the cover illustration
The figure on the cover of Blockchain in Action is captioned “Fille de Bulgarie,” or “Bul-
garian Girl.” The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents
Pays, published in France in 1788. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from one another, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countrieis. Perhaps we have traded cul-
tural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

Getting started with
 blockchain programming

Blockchain is poised to become an integral part of existing computing sys-
tems as a trust layer. So part 1 begins with an overview of a blockchain as decen-
tralized infrastructure, disintermediator, and distributed ledger technology: the
three Ds of blockchain. The three Ds together enable trust in decentralized appli-
cations with the help of an essential coding element called smart contracts. Part
1 focuses on the design and development of smart contracts in incremental steps.
Design diagrams and design principles are introduced to guide the smart contract
design. You’ll learn to code smart contracts by using the Solidity language, and
deploy and test them by using a web-based Remix IDE. Then you’ll learn to code
rules for trust and integrity in the smart contracts. Finally I introduce the Truffle
suite of tools with detailed instructions on installing it. You’ll be using Truffle
commands throughout the book for deploying and testing smart contracts.

 Chapter 1 is about blockchain basics. Chapter 2 introduces essential coding
elements of a smart contract, using a counter (Counter.sol) application and an
airline consortium (ASK.sol) for trading seats. Chapter 3 illustrates techniques
for verification and validation of the smart contract, using a digital democracy
application. Chapter 4 demonstrates the use of the Truffle suite of tools for
migrating the smart contract to a test chain Ganache and testing the deploy-
ment (Ballot-Dapp) with a web UI.

3

Blockchain basics

In the latter part of 2008 and early 2009, centralized systems of the world’s financial
markets—enabled by large intermediaries such as banks and investment firms—
failed and began to crumble. Trust in these systems eroded, and panic set in all
over the world with the collapse of financial markets. It was at this juncture that a
mysterious person or persons introduced to the world a working model of a peer-
to-peer decentralized digital currency system (with no central authority or adminis-
tration) called Bitcoin. The trust intermediation in this system was realized via soft-
ware that would later be named blockchain. Blockchain provided the software-based
verification, validation, recording, and integrity essentials for currency transfers.

 Even though Bitcoin appeared to have launched suddenly in 2009, the idea of a
working digital currency has been a quest since the dawn of computing. Bitcoin’s

This chapter covers
 Understanding blockchain

 Discovering decentralized system infrastructure

 Exploring distributed ledger technology

 Analyzing trust-enabling protocol

 Motivating blockchain applications with real-world
scenarios

4 CHAPTER 1 Blockchain basics

blockchain technology stands on a strong foundation of more than 40 years of scien-
tific research in cryptography, hashing, peer-to-peer networks, and consensus proto-
cols. Figure 1.1 provides a brief history of blockchain, its innovation and robust
scientific foundation, and its transformative effect on modern networked systems.

 On completion of this chapter, you’ll know the fundamental concepts of block-
chain and decentralized applications, such as transactions, blocks, a chain of blocks,
nodes, networks of nodes, and the protocol that ties all these elements together. With
these many components, blockchain is indeed a complex system. An understanding of
these foundational concepts is, therefore, imperative for the blockchain application
design and development that you’ll embark on in chapters 2–11.

1.1 From Bitcoin to blockchain
The initial excitement about blockchain technology was about enabling peer-to-peer
transfers of digital currency to anybody in the world, crossing human-created bound-
aries (such as the borders of countries) without any intermediaries such as banks. This
excitement was further heightened by the realization that this peer-to-peer capability
could be applied to other, non-cryptocurrency types of transactions. These transac-
tions involve assets such as titles, deeds, music and art, secret codes, contracts between
businesses, autonomous driver decisions, and artifacts resulting from many everyday
human endeavors. A transaction record may contain other details based on the block-
chain protocol and the application.

DEFINITION A transaction recorded on a blockchain contains a peer-to-peer
message that specifies the operations executed, data parameters used for the
execution of operations, the sender and receiver of the message, the transac-
tion fee, and the timestamp of its recording.

Figure 1.1 The birth of blockchain technology

Financial meltdown
of 2008–2009

Bitcoin was released to the
world in January 2009.

Bitcoin showed that a fact recorded on its
infrastructure–the immutable distributed ledger–
can be verified by anybody, thus establishing
trust among unknown peers. This enabled
peer-to-peer trusted transactions

Innovation: Trust infrastructure,
blockchain technology.

Transformative idea: Concepts (trust,
disintermediation, etc.) that worked for cryptocurrency
should work for other digitized assets
and peer-to-peer transactions.Internet

protocols

Cryptography

P2P networks

Consensus

protocols
Hashing

Merkle tree

algorithms
Others Others Foundation: 40+ years of scientific research

5From Bitcoin to blockchain

Bitcoin has been in operation continuously since its launch. At the time of this writ-
ing, according to Blockchain Charts (https://www.blockchain.com/en/charts), it is
delivering more than 200,000 transactions per day. Following its initial success, people
began to ask, “If you can transact digital currency, why not any other digital assets?”
This question was answered around 2013 with the addition of an environment for
code execution on another popular blockchain, Ethereum (https://ethereum.org).
The innovation was that the verification, validation, and recording could be extended
to other digital assets and to related transactions and systems. Therefore, blockchain
can play a crucial role in implementing decentralized systems by providing software-
based intermediation to other (non-currency) peer-to-peer transactions.

 Let’s take a look at a blockchain to give you an idea of what transactions, blocks,
and chains of blocks look like. This example will help you visualize blockchain context
and the problem space discussed in the next sections, which explore the transactions
and blocks for the Ethereum public blockchain (https://etherscan.io). Figure 1.2
shows transactions (Tx and transaction#) that represent messages between two
accounts (From and To) representing peer participants. These Txs enable the record-
ing of information on the blocks of the blockchain.

 Figure 1.2 also shows blocks of Txs. Each block (Bk) is made up of a set of transac-
tions and is identified by a block number. Block #10163275 has 142 Txs, and block
#10163274 has 60 Txs. You may see a different set of blocks when you visit the site. But

Chain of
blocks

Block # Transaction# Transaction’s from
and to addresses

Figure 1.2 A snapshot of the Ethereum public blockchain

https://www.blockchain.com/en/charts
https://ethereum.org
https://etherscan.io
https://etherscan.io

6 CHAPTER 1 Blockchain basics

you can always search for a particular block number (#10163275, in this case) and ver-
ify the number of Txs. The block will have the same number of Txs shown here, exempli-
fying the immutable nature of blockchain technology. The blocks are linked to form a
chain of blocks, or blockchain.

1.2 What is a blockchain?
A blockchain is a technology for enabling trust in a decentralized system of transacting
peer participants. The purpose of a blockchain is to verify and validate (or reject, if
not valid) a transaction initiated by a participant, and then execute the transaction
and record the proof of these actions with the consensus of the peer participants. As
shown in figure 1.3, the blockchain-based trust infrastructure exists within a larger sys-
tem. Blockchain infrastructure contains software for a specific purpose: trust interme-
diation among a large number of (typically unknown) peer-to-peer participants. On
the left side of figure 1.3 is a distributed (client/server) system performing routine
operations. This system may send messages that contain data to be verified, validated,
and recorded on the blockchain (on the right) to establish trust in that larger system.
In blockchain programming, you don’t replace an existing system; you enhance it
with code for trust intermediation through validation and verification.

 To help you further understand blockchain programming, let’s examine the block-
chain stacks for Bitcoin and Ethereum, shown in figure 1.4. These stacks represent the
two models of blockchain in its short history. Bitcoin has only the wallet application,

Processing

User
interface

Storage

Executable
code and rules on

blockchain
infrastructure

Blockchain Blockchain

Tx recorded
on blockchain

Blockchain-based trust infrastructure

Routine
operations

Messages (function calls) for verification,
validation, and recording

A distributed system

Blockchain programming: you don’t replace an existing system
but enhance it with code for trust intermediation.

Figure 1.3 Blockchain programming context

7What is a blockchain?

whereas Ethereum features programmable code called smart contracts (about which
you’ll learn more in chapters 2–4).

 Figure 1.4 also shows the three levels of programming:

 Protocol-level programming—This level involves software that is needed for the
deployment and operation of the blockchain itself. This software is similar to
your operating system or networking software. If you are a systems programmer
and administrator, you’ll program at this level. This text does not cover protocol-
level programming.

 Smart contract-level programming—One level above is smart contract (or rules
engine) programming. It is at this level that you design and program the rules
for verification and validation, and specify the data and messages that are to be
recorded on the underlying blockchain. The smart contract is the engine that
drives the blockchain on behalf of the user application. In chapters 2–4, you’ll
learn in depth about the design, development, and testing of smart contracts.

 Application-level programming—This level involves programming using web (or
enterprise or mobile) application frameworks and user interface design con-
cepts that are outside the blockchain protocol. In chapters 5–11, you’ll be pro-
vided details on web programming to link to underlying smart contracts and to
deploy end-to-end decentralized applications (Dapps) on the blockchain.

DEFINITION Dapps are web or enterprise applications that include application
logic to invoke blockchain functions that implement trust intermediation.

Dapps embed a significant code element—that of smart contracts. For any given smart
contract, an exact copy of the smart contract’s code is transmitted through a special
transaction and deployed in the participant nodes of a blockchain network.

DEFINITION A smart contract is an immutable executable code representing the
logic of a Dapp. The data variables and functions defined in a smart contract
collectively represent the state and operations for enforcing an application’s
(Dapp’s) rules for verification, validation, and recording on the blockchain.

Hardware

Operating system and network

Blockchain: Bitcoin protocol Blockchain: Ethereum protocol

Smart contract and virtual machine
sandbox

Wallet application

Blockchain applications

Two different blockchain protocols

Protocol-level
programming

Decentralized
application (Dapp)
programming

Examples: Linux
and TCP/IP

Smart contract
programming

Figure 1.4 Blockchain stacks and types of programming

8 CHAPTER 1 Blockchain basics

1.3 Blockchain programming
In the evolution from sequential programming to structured programming, functional
programming, object-oriented programming (OOP), web and database programming,
and big data programming, programmers experienced shifts in approaches, artifacts, and
architectures (such as OOP with classes and objects, and Hadoop and Map Reduce for
big data processing). Similarly, blockchain programming is yet another paradigm shift.

 Four fundamental concepts play a significant role in making blockchain program-
ming different. You need to understand these concepts before you start programming
in chapter 2, just as you need to learn about class and object concepts before under-
taking OOP (object-oriented programming). Given this context, the four key roles
fulfilled by a blockchain are

 Decentralized infrastructure—Special computing hardware and software stacks
support the blockchain protocol, smart contracts, and applications (Dapps).
The main components of this infrastructure are the computing nodes and net-
works connecting the nodes (section 1.3.1).

 Distributed ledger technology—On top of the infrastructure is the ledger. Transac-
tions and data are recorded simultaneously in all stakeholders’ ledgers. The
ledger is distributed because all the stakeholders record the same facts. It is
immutable because each block is linked to the signature of the previous block,
making it tamperproof (section 1.3.2).

 Disintermediation protocol—Participants in a decentralized system follow the same
blockchain protocol to connect and to communicate and transact with one
another. The protocol is a set of rules for everyone to follow. Ethereum and
Hyperledger, for example, are two different blockchain protocols (section 1.3.3).

 Trust enabler—In a decentralized system of participants, there are no central
authorities or intermediaries such as banks. You, therefore, need an infrastruc-
ture that implements the rules for governance, provenance, compliance, and
the like automatically, without any intermediaries. Blockchain software assumes
the role of a trust enabler (section 1.3.4).

1.3.1 Decentralized infrastructure
Blockchain infrastructure is inherently decentralized, like the railway tracks or road-
ways connecting cities. You can think of the Dapps that you’ll deploy as being like the
trains or vehicles that travel on the tracks and roads. With this picture in your mind,
let’s explore that infrastructure. I’ll defer the technical details and coding of the appli-
cations to later chapters. Your aim in this chapter is to comprehend the crucial role
played by blockchain infrastructure in supporting decentralized systems.

 What is a decentralized system? A decentralized system is a type of distributed system
in which

 Participants communicate peer to peer.
 Participants are in control of their assets, digital or otherwise (such as an audio

file, a digital health record, or a piece of land).

9Blockchain programming

 Participants can join and leave the system as they wish.
 Participants operate beyond the typical boundaries of trust (such as within a

university or a country).
 Decisions are made by the distributed participants, not by any central authority.
 Intermediation is achieved by the use of automated software such as a blockchain.

Let’s explore the architectural elements of blockchain that address the unique needs
of a decentralized system.

BLOCKCHAIN NODES, NETWORKS, AND APPLICATIONS

Consider air traffic. Flights have origins and destinations, and stopover airports and
waypoints form the airline networks. Similarly, blockchain nodes host the computa-
tional environment that serves as endpoints of transactions and also performs other
functions, such as relaying and broadcasting transactions.

DEFINITION Node is a collective name for blockchain software and the
machine or hardware on which it is installed for the participant of a decen-
tralized system.

Figure 1.5 shows the logical architecture of a single blockchain node. A node can sup-
port many accounts to represent the identities of peer participants in the decentral-
ized network. A 256-bit number represents an account. Compare this size with your
traditional computer’s address size of 64 bits!

DEFINITION An account represents a unique identity for a transacting entity.
An account is needed to initiate a transaction.

A blockchain node hosts the elements represented by the stack in figure 1.5. It serves
as a foundation for your blockchain application development.

 Let’s start from the bottom and move up. The lower two levels are the standard hard-
ware and software of most computing systems. The next level up is the blockchain pro-
tocol level: it houses the components of the blockchain, but you won’t program at this
level. The next layer hosts the application logic. This layer is where you solve problems
like access control to data and code functions for validation, verification, and record-
ing. The top layer is the user-facing interface where web (or enterprise) programming
is done, such as with HTML, JavaScript, and associated frameworks. These elements
form the Dapp and its user interface (UI) layer.

Web or enterprise application

This layer implements blockchain
functionality such as Tx > block
and consensus.

Decentralized applications (Dapps)

 Application logic on virtual machine
sandbox

Blockchain protocol implementation

Network and operating system

Computer systems hardware

These two layers are the
same as your web server’s.

This layer implements the
environment for application
logic execution.Account

AccountParticipant account

Figure 1.5 Blockchain node and application stack

10 CHAPTER 1 Blockchain basics

 A blockchain application is not a single-user application, unlike a handheld game
or an income tax calculator. It typically connects a large number of participants
through its network of nodes. Each node can host multiple accounts to identify the
different customers it services. A node can also host more than one Dapp, such as one
for a decentralized supply chain management system and another for a decentralized
payment system.

 Figure 1.6 shows a network of three nodes connected by a network. The network
facilitates broadcast of the

 transactions initiated by users
 blocks formed out of the transactions

These transactions and blocks constitute the payload of the network and, eventually,
after verification and validation, are recorded on the distributed ledger.

Txs

Network

Network

TxsTxs

Txs

Block
Blockchain client

node

Blockchain client
node

Blockchain client
node

Transactions (Txs)
and blocks of Txs
broadcast through
the network

One node
expanded

Decentralized applications (Dapps)

 Application logic on virtual machine
sandbox

Blockchain protocol implementation

Network and operating system

Computer systems hardware

Account
Account

Figure 1.6 A blockchain network of nodes broadcasting transactions and blocks

11Blockchain programming

A network identifier identifies a blockchain network of nodes. Network ID #1, for
example, is the main Ethereum public network; network ID #4 is a public network
called Rinkeby (https://www.rinkeby.io), and so on. You’ll have to indicate the net-
work by using its identifier while deploying your smart contract on the network. The
participants on a given network will share a unified distributed ledger for recording
their transaction details.

 The smart contracts are deployed in a sandbox environment such as a virtual
machine (VM) hosted by a blockchain node. The syntax of a smart contract is similar
to a class in an OO (object-oriented) language. It contains data, functions, and rules
for the execution of functions. Calling or invoking a smart contract function gener-
ates the transactions that are recorded on the blockchain, as shown in figure 1.7. If
any of the verification and validation rules fails, the function invocation is reverted.
But if the execution is successful, the generated transactions (Txs) are broadcast to
the network for recording, as shown in figure 1.7. The figure illustrates how a func-
tion call is transformed into actions that are recorded on the blockchain.

1.3.2 Distributed ledger technology

Now that you’ve explored the infrastructure, let’s focus on the technology that the
infrastructure supports. This core blockchain technology is known as distributed ledger
technology (DLT). In this section, I’ll dig deeper into this technology, exploring

Blockchain Blockchain

Timestamped
state and
transactions (Txs)

Smart contract data and
function execution; rules

for verification,
validation, and recording

Dapp UI

Function call

Blockchain
TxsTxs

User-Dapp messages
invoke smart contract
functions, verification,
and validation.

Function execution results
in Txs recorded on chain.

You’ll code this.

Figure 1.7 From application messages to Txs on the blockchain

https://www.rinkeby.io

12 CHAPTER 1 Blockchain basics

 What constitutes the blockchain DLT
 The physical structure of the DLT for recording blocks of transactions
 The operational details of how an application gets to use the DLT for its

intended purpose: verification, validation, and immutable recording for
enabling trust

 The consensus algorithm (at a high level) for the integrity of the DLT

TRANSACTIONS, BLOCKS, AND CHAIN OF BLOCKS

Applications initiate transactions and the execution of smart contract code. A simple
cryptocurrency transfer between accounts, for example, generates a “send” transac-
tion. The transactions generated are broadcast through the blockchain network and
then gathered and recorded in the distributed immutable ledger. Listing 1.1 shows an
example pseudocode for function calls for initiating two types of transactions. Tx1 is
for the transfer of cryptocurrency. Tx2 is an application-specific transfer of ownership
of an asset from one owner to another, probably to fulfill the sale of an asset. You can
also observe the use of the rule onlyByOwner for the transferOwnership function,
which means that only the owner of the account can execute that function. Such rules
are necessary for the autonomous systems that blockchain controls. In chapters 3–5,
you’ll learn how to code rules like these.

/Tx1: */ web3.eth.sendTransaction(fromAccount, toAccount, value);
/Tx2: */ transferOwnership(newOwner);

function transferOwnership onlyByOwner (account newOwner)..

Now that you know how transactions are generated and broadcast on a network, let’s
explore how they get recorded on the blockchain. A set of transactions makes a block,
and a set of blocks make a blockchain, as shown in figure 1.8. The process is as follows:

1 Transactions on the network are verified, gathered, and pooled. Nodes select a
set of transactions from the pool to create a block.

2 Participant nodes use a consensus algorithm to collectively agree or come to a
consensus on a single consistent block of transactions to be appended to the
existing chain.

3 A hash or representative value of the current lead block of the chain is added to
the newly appended block, creating a chain link.

Listing 1.1 Pseudocode for two functions initiating transactions

Cryptocurrency transfer from
one account to another

No-cryptocurrency transaction; current
owner is the implied sender of this Tx.

onlyByOwner rule validates that the
sender is the owner; if not, Tx reverts.

13Blockchain programming

As figure 1.8 demonstrates, a blockchain is an append-only distributed immutable led-
ger. Its creation begins with a single block called the genesis block. Every node of a
stakeholder on the blockchain has an identical copy of the blockchain, starting with
the genesis node. A blockchain DLT, therefore, is

 Distributed, because the blockchain protocol ensures that every distributed node
involved has an identical copy of the chain of blocks.

 Immutable, because each newly created block is linked to the existing blockchain
by the hash value of the current head of the blockchain, as shown in figure 1.8.

At this point, it is sufficient to know that a representative signature value of the block
n is stored in the block n+1 to ensure immutability. Any inadvertent or deliberate
change to a block’s data at a node will change the block’s hash value and render that
node’s chain invalid. (You’ll learn more about the hash value and its computation in
chapter 5.) The blocks of a blockchain are stored in the local file systems of the partic-
ipant nodes, as shown in figure 1.9. The chain of blocks on each node is the distrib-
uted ledger recording Txs and related data in its blocks. Figure 1.9 depicts the fact
that every node has an exact copy of the blockchain.

 At the time of this writing (2020), Bitcoin block creation (or mining) time—and,
hence, Tx confirmation time—is about 10 minutes. On Ethereum, block confirmation
takes about 10 to 19 seconds, whereas transaction confirmation time on credit cards
takes less than a second. Recall the speed of your internet connection 10 or 20 years
back; blockchain technology is experiencing a similar situation in these early years of

Transaction

Transaction

Transaction

Genesis
block 0

Block 1 Block 2 Block n

Hash of block 0

Hash of block 1 stored in block 2

Block

Block
n + 1

1. Transactions gathered

2. Appended to the chain on
consensus of participant nodes

3. Hash of block stored in
block +1 header, creating
a chain link. Any edit to block
changes hash , ensuring
immutability.

n

n
n

n

Figure 1.8 Transactions to blocks and blocks to the blockchain

14 CHAPTER 1 Blockchain basics

its existence. The developer community at the blockchain protocol level is working on
improving Tx confirmation times by using various consensus algorithms and by using
relaying techniques at the network level.

1.3.3 Disintermediation protocol

Like any transportation infrastructure, a blockchain infrastructure has rules that you
need to follow. If drivers don’t follow the laws of the road, chaos and gridlock ensue. A
protocol or a set of rules governs the structure and operation of a blockchain. A block-
chain protocol defines the following, among other things:

 The structure of a blockchain (transactions, blocks, and chain of blocks)
 Fundamental algorithms and standards for encryption, hashing, and state

management
 Methods for implementing consensus and a consistent chain of blocks
 Techniques for handling exceptions resulting in an inconsistent ledger
 The execution environment for code on the blockchain and rules for maintain-

ing consistency, correctness, and immutability in this context

You get the idea. The structure of the blockchain and operations on it are not arbi-
trary, but well guided by a protocol. The implementation of the protocol establishes
the base layer on which applications are written.

Decentralized applications (Dapps)

 Smart contract on virtual machine

Blockchain protocol implementation

Network and operating system

Computer systems hardware

Decentralized applications (Dapps)

 Smart contract on virtual machine

Blockchain protocol implementation

Network and operating system

Computer systems hardware

Account
Account

Account

BlockB Block

Transaction
Transaction

Network

Transactions and blocks of transactions
broadcast through network

Exact copy of chain of blocks
in participant node’s
local file system

Node

Node

Account

Figure 1.9 Blockchains stored in local file systems

15Blockchain programming

 The framework for code execution introduced by the Ethereum blockchain proto-
col has opened a whole world of opportunities in the decentralized realm. The smart
contract is the centerpiece and the main contribution of the Ethereum protocol.

 Consider the stack diagram in figure 1.10, which compares the Bitcoin and Ethe-
reum blockchains. The Bitcoin blockchain is for the transfer of cryptocurrency, and it
does that job well. It has only wallet applications for initiating transactions. Ethereum
supports smart contracts and a VM sandbox called Ethereum VM (EVM) on which the
smart contracts execute. Smart contracts in turn enable decentralized operation of
applications.

Currently, many blockchains (such as EOS, ZCash, and IOTA) exist, with different
protocols, and the expectation is that they will consolidate to a few eventually. The
goal of this chapter is to give you a general idea of the various features of blockchain,
independent of any particular technology. This high-level knowledge will help you be
a better blockchain designer and developer. You’ll follow the Ethereum blockchain
protocol for programming smart contracts and Dapps in chapters 2–11.

1.3.4 Trust enabler

Trust is critical for business and personal transactions, whether those transactions are
trade, commerce, legal, medical, marital, interpersonal, or financial. Imagine a busi-
ness transaction for transferring a million dollars. You have a secure channel for trans-
fer, but are you sure you can trust the parties involved? You typically use an
intermediary such as a bank to establish the credentials of the transacting parties. But
in a decentralized system, there are no humans checking identities or banks verifying
credentials. You need some other mechanism—a software mechanism. Blockchain
addresses this need by enabling a trust layer over the internet, thus facilitating trust
intermediation. The three Ds—decentralized infrastructure, distributed ledger tech-
nology, and disintermediation protocol—collectively enable trust in a system.

Figure 1.10 Bitcoin versus Ethereum protocol stacks

Hardware

Operating system and network

Blockchain: Bitcoin protocol Blockchain: Ethereum protocol

Smart contract and Ethereum virtual
machine sandboxWallet application

Blockchain decentralized
applications

Protocol-level
programming

You’ll program
at these levels.

Two different blockchain protocols

16 CHAPTER 1 Blockchain basics

NOTE In a decentralized system, trust intermediation is achieved by the
decentralized infrastructure (section 1.3.1), the DLT (section 1.3.2), and the
disintermediation protocol (section 1.3.3).

Figure 1.11 shows the evolution of the protocols leading to blockchain-based trust,
which has yet to become a standard in the internet context.

The internet was created for sharing research among scientists. It enabled connectivity
among computing machines and internetworking. Later, Hypertext Transfer Protocol
(HTTP) was introduced as the underlying protocol for the web. It became a standard
around 1991 and opened many commercial activities through web applications.

 Note that security was not part of the standard at that time. With increased digitiza-
tion and adoption of online activities came rampant online fraud and security
breaches. Security became critical for web applications, and it was retrofitted into
HTTP as a standard (HTTPS) around 2000. This addition enabled secure web appli-
cations. Global standards were established with formal Request for Comments (RFC)
documents from the Internet Engineering Task Force (IETF)—RFCs 7230, 2818, and
so on. Blockchain, introduced in 2009, established a trust layer alongside the security
layer of the internet. Trust is currently realized in centralized systems by ad hoc means
(such as verifying credentials, recommendation systems, and reviews/ratings) and by
human involvement in other situations, such as at airports and grocery-store check-
outs. Blockchain enables the trust layer for Dapps through software-based verification,
validation, and immutable recording of transactions and facts.

 Next, let’s look at some compelling decentralized scenarios that can benefit from
the blockchain’s DLT and its trust layer.

1.4 Motivating scenarios
In this section, you explore several issues that are prevalent in the systems you may deal
with in everyday activities. Consider the broad area of budgets and expense
management in organizations small and large: governmental and nongovernmental
agencies (NGOs), charities and disaster-relief agencies, and more. A significant issue is
accountability. Is the allocated amount being spent on the designated item or service?
Were the expected outcomes realized? Was the spending wasteful? Did the right people
authorize it? Can you show the money trail in a disaster-relief effort? Is the process

The internet TCP/IP (RFC 791, 793)

HTTP HTTPS security HTTPS security Blockchain trust

Web
application

Secure web
application

Secure, trusted web
application

Year 1991, RFC 7230 Year 2000, RFC 2818

Year 2009
Blockchain-based trust

Figure 1.11 Evolution of the internet and the blockchain-based trust layer

17Motivating scenarios

transparent? Are you able to collect the correct data for demonstrating the effectiveness
of the effort? I’m sure you can think of several other similar concerns.

 In the following sections, you’ll explore some of these concerns and how they can
be addressed by using smart contracts on an infrastructure enabled by the blockchain
protocol.

1.4.1 Automatic and consistent data collection

The sustainable development goals of the United Nations General Assembly specify
the purposes of UN programs. Your organization likely has similar goals that it hopes
to achieve with the budget allocated, and it likely keeps track of the goals and related
expenses through various reporting and data collection mechanisms. These are exam-
ples of decentralized scenarios in which many centralized computing systems are
interacting, but often inefficiently. There is insufficient evidence of the effectiveness
of many of the UN’s interventions, for example, due to lack of data or ineffective data
collection methods, such as surveys. In this situation, the items of interest could be
recorded in the DLT ledger. These items include

 Funds allocated for each agency and dates of disbursement
 Start dates and amounts transferred from the agency to actual fund users
 Project completion dates and statuses

Smart contract-enabled code can help organizations to collect data automatically as
the funds are disbursed and used. In this case, the user interface to the Dapp would
be an intuitive mobile app that invokes smart contract functions to record a distrib-
uted and immutable copy of the actions in the ledger of the blockchain. All the stake-
holders—say, UN agencies, local municipalities, and NGOs—automatically get a
consistent copy of the ledger.

1.4.2 Timely information sharing
Another example is a significant issue in U.S. government agencies uncovered by
experts who analyzed the 9/11 disasters: lack of sharing of information, in this case
between the central office of the Federal Bureau of Investigation and local offices
(one Minneapolis office in particular). In a blockchain setup, any update in a branch
office would have updated the central office’s ledger automatically. This information
would have been readily available and could have prevented the terrorists from board-
ing the flights.

 A similar lack of sharing of information with the FBI’s central database enabled the
slaughter of 24 people at a Texas church in 2017 (http://mng.bz/X0dY). A distributed
ledger supported by smart contracts on the blockchain with proper user access to the
data might have averted this massacre by preventing the sale of firearms to the gunman.
These examples make a case for the importance of a distributed mechanism for timely
information sharing. The sharing rules, conditions, and severity levels can be codified
into a smart contract that will, in turn, enable recording of relevant metainformation
in the distributed ledger of the blockchain.

http://mng.bz/X0dY

18 CHAPTER 1 Blockchain basics

1.4.3 Verifiable compliance

Let’s examine another area with numerous potential uses for the smart contract.
Health care is a vast domain that has many requirements related to regulations and
laws. Blockchain-based compliance, provenance, and governance can address many
inefficiencies in this domain. Consider the Health Insurance Portability and Account-
ability Act (HIPAA), which is meant to protect the privacy and confidentiality of
patient and other health data. Violations of this act by health care organizations or
individuals may result in fines of anywhere from $1,000 to $250,000, so it’s in the best
interest of everyone to keep track of how health care data is handled.

 Compliance with HIPAA rules can be codified into smart contracts and recorded
at the stakeholders’ blockchain node automatically, preventing any unwanted leaks of
sensitive data. Businesses can ensure verifiable compliance. And blockchain provides
a mechanism to demonstrate compliance to regulators.

1.4.4 Auditable actions for provenance

In health care and other operations, such as disaster recovery, there’s often a question
of whether actions and interventions were undertaken at the appropriate time. You
must have heard of cases in which a diagnostic test ordered at the right time would have
prevented the untimely demise of a patient. In one particular case narrated by an expert
in the field, the doctor did order the test, but the order was canceled by somebody else.
This case ended up in a court of law. The doctor had to prove his side of the story—some-
thing that would have been helped by having the sequence of orders recorded in a dis-
tributed ledger. In this case, smart contracts could have been used for provenance,
indicating that a particular treatment was ordered at the right time by a doctor.

 The distributed ledger created by the smart contract can provide ready access to the
audit trail of the actions taken for provenance in many other situations. I’m sure you can
think of examples in your own organization in which important undertakings could be
proved by an audit trail stored within the stakeholders’ blockchain infrastructure.

1.4.5 Guidance for governance

Let’s look at another use case from the health care domain. You must be aware of the
rampant misuse of opioids in the United States and its disastrous consequences. Smart
contracts could be used to prevent opioids from being dispensed to misusers while
making sure that patients who need it get the medication. In this case, the rules for
the governance of drug distribution could be codified into a smart contract shared by
all stakeholders in the health care system, including doctors, pharmacies, and govern-
ing bodies. This blockchain-based governance approach could easily be expanded to
cover the general distribution of any controlled substances and medicines.

1.4.6 Attribution of actions

In many situations, such as research and business workflows, it’s important to know who
did what and to whom to attribute the actions taken in a system. Suppose that a patient
in a remote rural area with a medical emergency gets transported by ambulance to a

19Retrospective

major hospital for care. How does the medical insurer decide who gets paid and how
much, based on the medical transportation process? The actions taken from the time
the call for help was placed to the time when the patient was treated could be recorded
in the stakeholders’ ledgers. The payment settlement could be automated through
rules governing the rates and services rendered. All this information could be coded in
a smart contract.

 The smart contract transforms the traditional distributed system into a decentral-
ized system by implementing the rules for compliance, governance, provenance, and
information sharing and by recording the necessary details on the blockchain.

1.4.7 Pandemic management

As I was finishing writing this book, the once-in-a-century COVID-19 pandemic
descended upon us, engulfing the planet. Every one of us got firsthand experience
with a decentralized planetary-level problem. Everyone and every community was iso-
lated, resulting in a decentralized world.

 Although blockchain is well suited to solving many problems in this type of situa-
tion, I feel that it is ideally suited to performing a crucial task in mitigating the spread
of this virulent disease: that of contact tracing. According to the U.S. Centers for Dis-
ease Control (CDC), contact tracing identifies cases by testing and tracing the source
and pathway to the affected patient. This task of contact tracing is similar to tracking a
fraction of a Bitcoin cryptocurrency to its origin. This trace for a cryptocurrency is
recorded automatically on the DLT of the blockchain. Thus, blockchain infrastruc-
ture and DLT, along with the smart contract code collectively, could provide an inno-
vative solution for contact tracing in an epidemic.

 Another area in which blockchain can help is the transparent management of
distribution of trillion-dollar aid packages and resource allocations. A significant
outcome of the pandemic is the decentralized world, in which people are managing the
situation themselves. Blockchain infrastructure is ideally suited to solve many problems
in this environment.

1.5 Retrospective
Computer systems are evolving toward decentralized systems, as shown in figure 1.12.
In the progression shown in figure 1.12, blockchain provides the necessary trust layer
for the operation of a decentralized network. These decentralized systems coexist with
centralized and other distributed systems to provide a robust environment for innova-
tive planetary-level use cases.

 Think about learning to drive. Before you get started, you should know some
details about the automobile you’ll drive—essential parts such as the accelerator,
brake, and clutch and their functions—and the rules of the road. Blockchain pro-
gramming is similar. In this introductory chapter, you learned how to drive the block-
chain machine by getting to know the motivating factors behind blockchain, its
structural components and operational details, and the pioneering solutions for trust

and integrity in systems that it enables. You also explored blockchain as a means for
supporting the three Ds: decentralization, disintermediation, and distributed
immutable recording.

 When you learn to drive, you can go places. Likewise, the basic knowledge you
acquired by reading this chapter will pave your way toward an informed approach to
problem-solving, designing, and coding with blockchain, helping you conceptualize
creative use cases and discover new application domains for this technology.

 In chapters 2–11, you’ll learn how to problem-solve with blockchain and how to
design, develop, and test smart contracts and Dapps. You’ll learn about design princi-
ples for developing blockchain solutions, and you’ll see how to tell when a blockchain
solution will work and when blockchain is not the right choice. You’ll also find ideas
for disrupting your application domain and transforming the ongoing digitization
and automation efforts in many application areas.

1.6 Summary
 Computing systems are trending from distributed, centralized systems to decen-

tralized systems in which participants transact peer-to-peer and operate beyond
the usual boundaries of trust.

 Blockchain makes decentralized operation possible by providing a trust layer,
an infrastructure, and a protocol governing blockchain’s operation.

 Blockchain enables decentralization, disintermediation, and a distributed
immutable ledger for recording relevant information about an executing
application.

1980s on: distributed autonomous networked processors.
Rebirth of centralized systems: Amazon, Google
aggregating enormous amount of data and assets;
mammoth intermediaries such as banks.

1975+: Personal computers (PCs) evolved into
laptops and handheld computing devices.

1960+: Mainframe systems
held all data and computing.

2000+: Peer-to-peer, digital
assets were held by peers,
p2p transactions.

Electro-
mechanical

systems

Centralized
systems

Personalized
computing
systems

Centralized and
distributed
systems

Decentralized
systems

We are here.

Blockchain will take us here:
innovative planetary-level system models
based on blockchain trust.

Figure 1.12 Progression to decentralized systems

21Summary

 A blockchain protocol defines the rules governing the participants; the comput-
ing nodes; the networks connecting the nodes; the decentralized application
stack on the nodes; and the transactions, blocks, and chain of blocks.

 The Ethereum blockchain application stack supports a computational frame-
work called smart contracts and an execution environment for it.

 There are enormous opportunities to develop groundbreaking decentralized
applications by using blockchain technology in numerous domains, thus dis-
rupting and innovating ongoing digitization efforts.

 Businesses need thought leaders, designers, and developers to advance this
innovation. It is imperative that application developers at all levels, from the
Internet of Things (IoT) to the web, learn about blockchain. Providing you this
blockchain knowledge and enabling related design and development skills is
the overarching goal of this book.

22

Smart contracts

The smart contract is a significant component of the blockchain technology that
has been instrumental in transforming a cryptocurrency framework into a trust
framework enabling broad range of decentralized applications. This chapter pro-
vides details on the concept, design, and development of a smart contract, and also
examines the power of executable code on the blockchain.

 Structurally, a smart contract is a standalone piece of code similar to a class in an
object-oriented program. It is a deployable module of code with data and functions.
Functions serve the specific purposes of verification, validation, and enabling
recording of the messages sent. A contract in the real world involves rules, conditions,

This chapter covers
 Understanding smart contracts

 Applying design principles to develop smart
contracts

 Coding smart contracts with the Solidity language

 Running and transacting with smart contracts by
using the Remix IDE

 Designing, developing, deploying, and testing
smart contracts for two use cases

23The concept of a smart contract

laws, regulations to be enforced, criteria, contingencies, and items for provenance such
as dates and signatures. Similarly, the smart contract in a blockchain context
implements the contract rules for solving a decentralized problem. It functions as a rules
engine as well as a gatekeeper, so understandably, the smart contract design requires
careful consideration. Following is an explanation of a smart contract modified to
include the code aspects.

DEFINITION A smart contract is executable code on the blockchain intended to
digitally facilitate, verify, validate, and enforce the rules and regulations of an
application. Smart contracts allow the performance of credible transactions
without third parties. These transactions are trackable and irreversible.

In this chapter, you’ll learn a set of design principles that will guide you through the
design and development of smart contracts and blockchain programming. You’ll
apply these design principles to design a smart contract for a simple use case (a decen-
tralized counter) and a different larger use case (for a decentralized airline consor-
tium). To implement the design in the form of code, you need the following:

 A blockchain platform
 A language to code the smart contract
 A suitable environment to develop, compile, deploy, and test it

You’ll use the Ethereum (https://ethereum.org) blockchain as the platform and a
special language called Solidity (https://solidity.readthedocs.io/en/v0.6.2) to code
the smart contracts. Then you’ll deploy the code in an integrated development envi-
ronment (IDE) called Remix (https://remix-ide.readthedocs.io/en/latest) and test
its operation. This trio of technologies provides a versatile development environment
and helps you ramp up the blockchain programming learning curve quickly. Starting
in chapter 6, you’ll migrate from this initial environment to a production setup that
will allow you to develop end-to-end Dapps and deploy them on public blockchains.

 On completion of this chapter, you’ll be able to analyze a problem, design a smart
contract solution, implement it using Solidity, and deploy it on a test blockchain pro-
vided by the Remix IDE. You’ll also have learned some best practices for blockchain
programming.

2.1 The concept of a smart contract
A smart contract is a piece of code that improves on the basic trust enabled by the
Bitcoin blockchain protocol. It adds programmability that in turn enables transactions
for digital assets besides cryptocurrency. A smart contract addresses the need for
application-specific verification and validation for blockchain applications. It opens
the trust layer of the blockchain for general-purpose applications. Let’s explore the
smart contract in detail.

 I’ve chosen to discuss Ethereum’s definition of a smart contract because Ethereum
is a general mainstream blockchain. Also, it has been used as a reference

https://ethereum.org
https://solidity.readthedocs.io/en/v0.6.2
https://remix-ide.readthedocs.io/en/latest

24 CHAPTER 2 Smart contracts

implementation for many other industry blockchains, such as JPMorgan’s Quoram
(https://www.goquorum.com) blockchain for large financial transactions and r3
Corda (https://www.r3.com/corda-platform) for business applications. Recall the
layer diagram from chapter 1, shown again in figure 2.1, modified to include smart
contract or application logic details. The smart contract is deployed in a sandbox
environment and identified by a 160-bit account address like any other participants on
the blockchain network. It executes on the virtual machine (VM) on the blockchain
node and is identified by an account number, as shown in the figure.

2.1.1 Bitcoin transactions versus smart contract transactions

Let’s compare a Bitcoin transaction and a smart contract transaction, as shown in figure
2.2, to give you an idea of the difference between currency transactions and noncurrency,
application-dependent function calls. As you can see, in Bitcoin, all the transactions are
about sending value (Tx(sendValue)). In the case of a blockchain that supports smart
contracts, a transaction embeds a function implemented by the smart contract. In figure
2.2, this function is a voting smart contract. The functions are validateVoter(), vote(),
count(), and declareWinner(). The invocation of these functions results in the

Web or enterprise application

This layer implements blockchain
functionality such as Tx > block
and consensus.

Decentralized applications (Dapps)

 Application logic on virtual machine
sandbox

Blockchain protocol implementation

Network and operating system

Computer systems hardware

These two layers are the
same as your web server’s.

This layer implements the
environment for application
logic execution.Account

AccountParticipant account

Figure 2.1 Blockchain application stack and layers

Figure 2.2 Cryptocurrency transactions versus smart contract transactions

Start
S1

Ready
S2

Voted
S3

Counted
S4

Done
S5

Tx(count)

Tx(validateVote) Tx(vote)

Tx(declareWinner)

Start
S1

S2

S3

S4S5

Tx(sendValue)

Tx(sendValue)
Tx(sendValue)

Tx(sendValue)

Bitcoin blockchain supports only
transactions for sending cryptocurrency.

A blockchain with smart contracts (such as Ethereum)
can support any application logic.

Ex: transactions for ballot
applications

Bitcoin transactions Smart contract transactions

https://www.goquorum.com
https://www.r3.com/corda-platform

25Design of a smart contract

transactions that will be recorded on the blockchain (Tx(validateVoter), Tx(vote), and
so on). This ability to deploy an arbitrary logic on a blockchain significantly enhances its
applicability beyond simple cryptocurrency transfers.

2.1.2 What does a smart contract do?

The smart contract acts as the brain of a blockchain application. Like the human
brain, it is responsible for many vital functions, including the following:

 It represents a business logic layer for verification and validation of application-
specific conditions.

 It allows for the specification of rules for operations on the blockchain.
 It facilitates the implementation of policies for the transfer of assets in a decen-

tralized network.
 It embeds functions that can be invoked by messages or function calls from

participant accounts or other smart contract accounts. These messages and
their input parameters, along with additional metadata such as the sender’s
address and timestamp, result in transactions recorded in the distributed ledger
of the blockchain.

 It acts as the software-based intermediator for decentralized blockchain-based
applications.

 It adds programmability and intelligence to the blockchain through the specifi-
cation of the parameters of its functions.

With all these crucial capabilities, a smart contract is indeed a core component of the
decentralized blockchain application.

2.2 Design of a smart contract
Let’s begin our exploration of smart contract design with a simple example that will
take you through the entire process, from problem statement to code deployment. In
this first example, you’ll design a decentralized counter. Counters are common ele-
ments in everyday applications. Table 2.1 lists types of systems that use a counter. Turn-
stiles count the number of people entering and exiting an amusement park. A stock
market index goes up or down based on the sales performance of stocks in a centralized
system. A nation’s trade deficit fluctuates depending on reports from the distributed
entities representing the various trade sectors. The world we live in is an excellent
example of a naturally decentralized system, with its population determined by the
global number of births and deaths. Take a few minutes to reflect on these examples.

Table 2.1 Examples of counters in diverse systems

System type Counter example

Manual system Turnstile for counting in an amusement park

Centralized system Stock index

26 CHAPTER 2 Smart contracts

The counter is a simple but versatile use case that illustrates the smart contract devel-
opment. You may be tempted to jump in and start coding, but you must resist this temp-
tation and instead design the contract first. It’s important to have the correct design
before developing the code. Moreover, a design representation is independent of the
smart contract language, thus providing you a blueprint for different implementations.

 A smart contract is deployed on the blockchain by a transaction. It is permanently
recorded on the blockchain, irreversible and unchangeable, and part of the chain of
blocks, as stated in design principle 1.

DESIGN PRINCIPLE 1 Design before you code, develop, and deploy a smart
contract on a test chain, and thoroughly test it before you deploy it on a pro-
duction blockchain, because when the smart contract is deployed, it is
immutable.

Your goal in the design process is to define the contents of a smart contract; specifi-
cally, its

 Data
 Functions that operate on the data
 Rules for operations

Design principle 2 initiates the design process by defining the users of the system that
will be served by the application.

DESIGN PRINCIPLE 2 Define the users of and use cases for the system. Users
are entities that generate the actions and the input and receive the output
from the system you’ll be designing.

2.2.1 A use case diagram for the counter

Let’s apply these principles and begin the design process for the counter problem
with the standard Unified Modeling Language (UML; https://www.uml.org/
index.htm) tools for design representation: the use case diagram and the class dia-
gram. The UML design representation may be familiar to many advanced developers,
but a beginner developer may not be familiar with this. You can refer to the UML
description in appendix A to create these diagrams.

 The UML use case diagram helps you think through the problem and decide how
the smart contract—and, more specifically, its functions—will be used. Figure 2.3
shows just one actor: a stick figure representing a decentralized application that will
use the counter.

Distributed system Nation’s trade deficit

Decentralized system World population

Table 2.1 Examples of counters in diverse systems (continued)

System type Counter example

https://www.uml.org/index.htm
https://www.uml.org/index.htm
https://www.uml.org/index.htm

27Design of a smart contract

First, let’s think about the functions of a counter:

 initialize() to a value.
 increment() by a value.
 decrement() by a value.
 get() to access the value of the counter.

This diagram clearly articulates the intent of the smart contract. This diagram is a
good starting point for the design process, providing an artifact for discussion among
your team members and stakeholders who are interested in the problem. It also pro-
vides a systematic lead-in to the next steps in the design process. Note that this step of
use case design representation is dependent on the problem specification; it does not
require you to specify any coding or system dependencies.

 Next, let’s explore who uses these functions and what the rules (if any) are.

2.2.2 Data assets, peer participants, roles, rules, and transactions

Now that you’ve created the use case diagram, the next step is elucidating the various
attributes of the blockchain-based component of the problem. We will refer to this
step, outlined in design principle 3, as data asset analysis.

DESIGN PRINCIPLE 3 Define the data assets, peer participants and their roles,
rules to be enforced, and transactions to be recorded for the system you’ll be
designing.

For this decentralized counter problem, let’s apply design principle 3 to arrive at the
following items:

increment

User of
decentralized

application

decrement

initialize

Operations on
Dapp user interface
and functions on
smart contracts

get

Use

Use

Use

Use

Figure 2.3 Use case
diagram for the counter

28 CHAPTER 2 Smart contracts

 Data assets to track—The value of the counter
 Peer participants—The applications that update the counter value
 Roles of these participants—Updating the counter value and accessing its value
 Rules to be verified and validated, to be applied to data and functions—None in this

use case
 Transactions to be recorded in the digital ledger—initialize(), increment(), and

decrement()

Note that you may decide to record only the functions or transactions that change the
value of the counter. Thus, not all functions specified in the smart contract will result
in transactions to be saved in the blockchain’s distributed ledger. The get() function
is to view the contents of the counter, and you may not want its invocation recorded
on the blockchain. You can specify this characteristic by defining it as a view-only func-
tion. The transactions of view functions are not recorded on the blockchain.

2.2.3 From class diagram to contract diagram

In this step of the design process, you’ll define the UML class diagram as a guide for
the design of the solution to the counter problem. A class diagram defines the various
structural elements of the solution. It draws upon the items discovered in the previous
two steps (creating the use case diagram and digital asset analysis). The typical UML
class diagram of traditional object-oriented programming (OOP) shown on the left
side of figure 2.4 has three components:

 Name of the class
 Data definitions
 Function definitions

The smart contract diagram on the right side of figure 2.4 has one additional compo-
nent: the rules for accessing the functions and data. This component distinguishes a
smart contract diagram from a traditional class diagram. Design principle 4 deals with
contract diagrams.

Modifiers specify rules to
control access to data
and functions.

Rules validate parameters
and control execution
of function.

Class name Contract name

Data definitions or digital
assets

Data definitions or digital
assets

Modifiers or rules for invoking
functions

Functions that may result in
state changes and

transactions recorded on the
distributed ledger

Functions that may result in
state change and

transactions recorded on the
distributed ledger

Figure 2.4 Class diagram versus contract diagram templates

29Design of a smart contract

DESIGN PRINCIPLE 4 Define a contract diagram that specifies the name, data
assets, functions, and rules for execution of functions and access to the data.

In the simple use case of the counter, no conditions or rules are used. That’s fine; we
don’t need any rules, because this problem is a simple one used to illustrate the design
process. The contract diagram for the counter is shown in figure 2.5. You’ll use the camel-
case convention for the identifiers of the various components (data variables and func-
tions) of the contract. The diagram shows the name of the contract as Counter, the only
data element as an integer called value, and the functions from the use case diagram
in figure 2.3, which is replicated on the left side of figure 2.5. Besides the three func-
tions—initialize(), increment(), and decrement()—the contract diagram includes
a constructor() function and a get() function. The constructor, when invoked,
deploys the smart contract code in the VM sandbox supported by the blockchain infra-
structure. It also initializes the contract’s state if the constructor has any parameters.
The get() function is a utility function that returns the current value of the counter.
This function is a view function; no transaction is recorded when it is invoked.

 Conceptualizing the diagram in figure 2.5 is an essential step in the design of a smart
contract. This representation in figure 2.5 is not much different from the routine
object-oriented class design. You can create this contract diagram by using diagrams
.net (https://www.diagrams.net) or any other UML tool you are familiar with. The con-
tract diagram is a convenient artifact for design discussions with stakeholders and the
development team.

increment

User of
decentralized

application

decrement

initialize

Operations on
Dapp user interface
and functions on
smart contracts

get

View function
Tx not recorded

Counter

unit value

No rules or conditions;
anybody can invoke
functions for any
of the counter operations.

constructor()
initialize (unit)
increment (unit)
decrement (unit)
get ()

Contract diagram with no rules

Figure 2.5 Counter contract diagram

https://www.diagrams.net

30 CHAPTER 2 Smart contracts

2.3 Development of a smart contract code
You are now ready to develop the smart contract code in a high-level language.
Although many languages are available—such as Java, Python, and Go—these are
general-purpose languages with rich syntax and semantics, supported by extensive
libraries. For smart contract development, you need a limited language customized for
blockchain operations. Solidity is one such language. The Ethereum foundation
introduced this language, but other blockchain platforms, such as Hyperledger, also
support it. You will use Solidity to code your smart contracts.

 It’s important to understand that blockchain programming is not about porting or
translating code written in a traditional high-level language to Solidity. Writing a con-
tract code is about precise instructions for blockchain-oriented recording. Smart
contract code does not need all the bells and whistles of a general-purpose language.
On the other hand, it requires specific blockchain-oriented features for handling
things like account addresses, rule specifications, and transaction reversals to be built
into the language. Moreover, the smart contract code executes in a restricted sandbox
environment to maintain consistency among the nodes of the blockchain. These are
the justifications for using a special language for smart contract implementation. To
summarize, Solidity is a custom language designed for smart contract development.

 Let’s explore some of the features of the Solidity language before coding the
Counter smart contract.

2.3.1 Solidity language

Solidity is an object-oriented, high-level language for implementing smart contracts,
influenced by C++, Python, and JavaScript. Solidity is statically typed and supports
inheritance, libraries, and user-defined types; it also provides many useful features for
developing blockchain applications. Because its syntax and semantics are similar to
those of languages you may know, I will not explicitly discuss the language elements of
Solidity but will introduce and explain them as we go, using code snippets. You will
use the Remix integrated development environment for writing, editing, compiling,
deploying, and testing the code on a simulated blockchain.

2.3.2 Smart contract code for Counter

In this section, you’ll develop the code for the smart contract specified in the design
diagrams of figure 2.5. The complete code in Solidity is shown in listing 2.1. The first
line specifies the version of the language used for this code. It’s mandatory to include
this directive to ensure that you use the compiler version that matches the Solidity lan-
guage version used in the code. In this case, you’ll be using version 0.6.0 of the Solid-
ity language. You specify the version number with the pragma directive. After the
pragma directive, the contract keyword and the name of the contract (in this case,
Counter) begin the definition of the contract code.

31Development of a smart contract code

NOTE At the time of completion of this book, the latest version of Solidity
was 6.0. This version is used for examples. You’ll have to make any minor
changes that may be required for later versions when you read this book.

Next, you define the data components of the smart contract. The data types in Solidity
are similar to those in any high-level language. In this case, the uint (unsigned
integer) data type is used to define the identifier that stores the value of the counter.
The uint type in the blockchain realm differs significantly from the integer data in
mainstream computing: it’s a 256-bit value as opposed to 64-bit in a general-purpose
language. uint, int, int256, and uint256 are aliases of one another.

pragma solidity ^0.6.0;
// imagine a big integer counter that the whole world could share
contract Counter {
 uint value;
 function initialize (uint x) public {
 value = x;

 }

 function get() view public returns (uint) {
 return value;
 }

 function increment (uint n) public {
 value = value + n;
 // return (optional)
 }

 function decrement (uint n) public {
 value = value - n;

 }
}

A function is defined by the function keyword and the name of the function, fol-
lowed by the parameter type and name and the body of the function within curly
braces. You can see the definitions of four functions in listing 2.1: initialize(),
get(), increment(), and decrement(). You’ll also observe that there is no definition
for an explicit constructor. In this case, a default constructor is used for deploying
the contract.

 All the functions are declared public and therefore have public visibility (as
opposed to private), which means that any valid participant (or account) on the
blockchain can invoke these functions. The function definitions can end with a
return statement, which is optional unless there is an explicit value to be returned, as
is the case with the get() function. The initialize(), increment(), and decre-
ment() functions receive a value as a parameter, and the function body uses the

Listing 2.1 Solidity code for Counter smart contract (Counter.sol)

Shared
data for

the
Counter

value

Functions of
the Counter

32 CHAPTER 2 Smart contracts

parameter value to update the variable value. Behind the scenes, each function invo-
cation is recorded as a transaction on the distributed ledger. Any state change of
value is also recorded.

 Note that get() is a “view” function, and its invocation will not be recorded on the
blockchain because it does not change the state or the value of the counter.

 To create your smart contract, follow these steps:

1 Open the Remix web IDE in your browser.
2 Choose the language Solidity.

(Vyper is the other language supported.)

3 In the IDE, click the + icon at the top of the left pane to create a new file.
4 In the pop-up window that opens, name the file Counter.sol.

(.sol is the file type for programs written in Solidity.)

5 Type (enter) or copy the Counter code in listing 2.1 into the editor window.

2.4 Deploying and testing the smart contract
Are you ready to deploy the smart contract and explore its workings? You’ll deploy the
contract in the same Remix development environment in which you entered the
smart contract code in Solidity (section 2.3.2). Let’s explore the Remix IDE before
you start testing the smart contract.

2.4.1 The Remix IDE

The Remix IDE (figure 2.6) is directly accessible at https://remix.ethereum.org. You
can open it and follow along as we discuss its features. This version is the latest version
as of February 2020. The Remix IDE layout changes yearly to optimize user experi-
ence, but the concepts are the same. Be aware that the layout may change again next
year and that the color schemes for the buttons also change frequently.

 Figure 2.6 shows the seven features of the Remix IDE that you’ll use in working
with the development of a smart contract. Open the Remix IDE, identify the items
indicated, and follow along with the explanation provided. (Note that I’ve chosen the
light theme from the settings icon at the bottom corner, so that Remix appears better
for print material.)

Remix
Are you curious about the development environment of the Solidity smart contract,
editing it, compiling it, setting up and configuring a blockchain, deploying the com-
piled code on this chain, and testing it? Remix provides a cool web/cloud-based inte-
grated development environment with no installation required. Not only that, but it
also scaffolds a JavaScript-based simulated test chain environment where you can
deploy your smart contract code and test it! This all-in-one environment also allows
you to onboard your tested application to external blockchains other than the test
chain supported by Remix.

https://remix.ethereum.org

33Deploying and testing the smart contract

The main features of the Remix IDE include the following:

1 The file explorer on the left is where you create and manage your files: you can
open, close, create, and delete files here. The files are automatically saved on
the Remix (cloud) server. You can also synchronize them to your local drive and
folder.

2 The editor space in the middle is where you enter your code and review files,
such as the .sol files of the smart contract and the .json files of transactions
recorded. It also features a just-in-time compiler (optional) that points out
errors as you enter the code.

3 The output console, just below the editor window, is where you can view the trans-
actions and see confirmation of their recording, as well as any errors and
debugging details.

4 The toolchain on the left panel offers icons representing commands to compile
and deploy the compiled code. After clicking the Compile and Deploy icons,
click the Deploy button to deploy a smart contract.

5 The blockchain simulator offers an execution environment (JavaScript VM) as
well as connections to live blockchain networks. The Remix IDE provides a set
of account addresses and identities for the test blockchain. The account num-
bers identify participants. Few (10) accounts are available for testing purposes,
but you can create more if you need them.

3. Output console

2. Editor

1. File explorer

4. Compile, and deploy
commands

5. Blockchain simulator

7. Transaction recorded

6. User interaction
panel to run Txs

Figure 2.6 The Remix IDE

34 CHAPTER 2 Smart contracts

6 The user interaction panel, in the bottom-left corner, lets you interact with a
deployed smart contract to run transactions. It exposes all the public functions
and data, along with buttons to invoke the functions and text boxes for input
parameters. The output of the invocation, if any, is displayed just below the
function buttons.

7 All the transactions recorded on the blockchain are provisioned in a .json file
for easy review. You can see the Transactions Recorded button in the middle of
the panel on the left.

Now you are ready to test the smart contract code that you copied into Remix. Work-
ing with the simple Counter.sol contract will enable you to understand the smart con-
tract’s structure and development process, as well as the features of the Remix IDE.

2.4.2 Deployment and testing

It’s time to deploy and test the Counter smart contract. In the Remix web IDE, follow
these steps:

1 Open the file explorer icon, and click the dark + symbol. In the box that pops
up, enter Counter.sol for the name of the contract. Copy the code from the
Counter.sol file into the editor window, if you haven’t done so already, and click
the Compile icon. You should see a Compile button appear; when it does, click
it. (You could also click the auto compile check box to skip this step.)

2 Make sure that the environment is set to JavaScript VM, and click the Run icon
in the command menu. You should see a banner titled Counter.sol across the
middle of the panel on the left.

3 You’re ready to deploy and explore. Click the Deploy and Run Transactions
icon. Click the Deploy button in the left panel. Then click the small down arrow
next to Deployed Contracts, as shown in figure 2.7. You’ll see an interaction
panel at the bottom of the screen.

4 You’re all set to interact with the smart contract and see it in operation. Here’s a
sample interaction: enter 456 in the Initialize box, click the Initialize button,
and then click the Get button to view the value. Repeat the operation by enter-
ing values in the Increment and Decrement boxes and then clicking Get.

As you’re testing these operations, make sure that you observe the output console at
the bottom of the Remix IDE just below the editor. You’ll see the transactions created
by these operations (initialize, get, increment, and decrement) listed as pending at
first and then showing successful execution. You can simulate different participants by
changing the identity specified by the account number in the drop-down box in the
top-left panel, as shown in figure 2.7.

 You’ve now deployed and tested your first smart contract. This setup will be the
rapid prototyping environment—the foundation on which you’ll build a full-fledged
Dapp. You’ll explore other features of the Remix IDE in sections 2.5 and 2.7, as well as
in later chapters when you design smart contracts for more complex use cases.

35Deploying and testing the smart contract

2.4.3 Key takeaways

Let’s look back at what you’ve accomplished so far in the design process and compare
it with traditional counter design.

 You designed a Counter smart contract that was similar in appearance to the code
for a conventional counter. You may think it’s like a regular Java application that you
run from the command line, but it is different.

 When a smart contract code is deployed on a blockchain, it is accessible to any-
body who has a defined identity on that blockchain. This identity could represent a
participant (human or computer program) in Albany, New York, or in Bali, Indonesia;
it is equally accessible as long as the participant has an account number and is con-
nected to the same blockchain network. You may argue that this application is like any
web application: a distributed system. But a distributed web application does not
maintain a distributed immutable ledger. The blockchain does, and as a result, every
participant records the same copy of the list of transactions that happened on the
blockchain for this particular smart contract. This information is automatically logged

Account address on . . .

Compile icon

Deploy and Run
Txs icon Deploy button

Deployed
contracts to run Txs

User interface

Figure 2.7 Left panel of Remix IDE

36 CHAPTER 2 Smart contracts

with the agreement (consensus) of all the stakeholders on the network. Then the
immutable ledger can be used to trace the provenance of the who, when, and what of
the transactions. Thus, the distributed immutable ledger of the blockchain enables
trust among unknown decentralized participant nodes, opening a whole world of
opportunities for innovative Dapps, as you’ll see next.

2.5 What makes a blockchain contract smart?
Here are some cool features of a smart contract that make it smart. A smart contract is
equivalent to any participant in a blockchain network because it has

 A name
 An address
 A cryptocurrency balance (ether, in this case)
 Built-in features to send and receive cryptocurrency (ether, in this case)
 Data and functions
 Built-in features to receive messages and invoke functions
 The ability to reason out the execution of a function

These aspects distinguish and set apart a smart contract from a regular piece of code.
A smart contract is indeed smart and different. Let’s examine these features of a smart
contract before we begin another application that uses some of these special features.

 In a traditional computing system, a participant is identified by a username and an
associated password. These elements are used for authentication. This <username,
password> combination will not work in a decentralized system, because peers are
beyond the usual boundaries of trust (as in the relationships university–student or
country–citizen). The solution is to provide a unique identifier for each participant
based on cryptographic algorithms. (You’ll learn more about this topic in chapter 5.)
All the participants interacting with the blockchain, including a smart contract, have
an account number or address that uniquely identifies them:

 Ethereum supports two types of accounts: externally owned accounts (EOAs)
and smart contract accounts. Both types of accounts are identified by addresses
that are 160 bits, or 40 bytes, long. You can view the account numbers in the
Remix IDE.

 Both types of accounts, EOAs and smart contracts, can hold a balance of ethers.
Thus, every account has these two implicit attributes: address and balance. You
may not find these attributes explicitly declared in your smart contract;
address(this).balance will get you the balance held in your smart contract.

 An EOA or a smart contract account can invoke a smart contract function by
sending a message. This message has two implied attributes: msg.sender and
msg.value. Yes, a message can carry a value that is added to the balance held by
the smart contract when one of its functions is invoked. The function has to be
declared with a payable modifier to be eligible to receive funds.

37What makes a blockchain contract smart?

These concepts are captured in the AccountsDemo.sol smart contract shown in listing
2.2. Copy this smart contract, and deploy it in the Remix IDE. You’ll see the screen-
shot shown in figure 2.8. In the left panel of the Remix IDE, you’ll see EOAs on the
simulated VM. You can also see the smart contract address in the bottom part of the
left panel, as indicated. Choose an Account in the left panel of the Remix IDE, and
specify an ether value in the Value box before clicking the Deposit button. Then click
the accountBalance, depositAmt, and whoDeposited buttons to view the Accounts-
Demo smart contract’s attributes. Repeat with a different account (EOA) and ether
value. You’ll notice that the smart contract’s balance is automatically and cumulatively
updated. Explore more with this smart contract to get an idea of these powerful fea-
tures. You can see that a smart contract can receive, keep, count, and send cryptocur-
rency autonomously! These special characteristics of a smart contract open a whole
new world of opportunities.

pragma solidity ^0.6.0;
contract AccountsDemo {

 address public whoDeposited;
 uint public depositAmt;
 uint public accountBalance;

 function deposit() public payable
 {
 whoDeposited = msg.sender;
 depositAmt = msg.value;
 accountBalance = address(this).balance;
 }
}

Listing 2.2 AccountsDemo.sol

deposit()
function

can receive
payment

(payable).
Every function invocation
has an implied msg.sender.

Every function invocation
can be sent a msg.value
by the msg.sender.

Smart contract
account address

Externally owned
account

msg.value

msg.sender

Smart contract’s balance
gets added with every
msg.value sent.

Amounts in wei

Figure 2.8 Interface for
AccountsDemo smart contract

38 CHAPTER 2 Smart contracts

2.6 Decentralized airline system use case
Let’s apply what you’ve learned so far to another use case. The reason for introducing
yet another Dapp is to highlight the importance of different types of accounts and to
emphasize another important aspect of blockchain programming: keeping only mini-
mal required information on the blockchain.

 The airline system consortium (ASK instead of ASC) blockchain for the airline indus-
try enables peer-to-peer transactions of flight seats among participating airlines. I’ll
use the acronym ASK to refer to this use case. You can think of ASK as being a peer-to-
peer marketplace in which airlines that are not necessarily code-sharing partners can
trade flight seats.

2.6.1 ASK definition

In the basic definition of the problem, airlines go about their routine business with
their traditional centralized distributed systems and manual agents managing this sys-
tem. Besides, they can participate in a permissioned, decentralized consortium of air-
lines. We’ll refer to this consortium as ASK. This scenario is hypothetical and created
especially for this exercise.

 Unlike in traditional systems, airlines may join and leave this system as they wish.
An airline joins ASK by depositing a predetermined minimum escrow used for pay-
ment settlement for seats used in ASK transactions. The consortium allows an airline
to trade (buy and sell) flight seats under certain circumstances and conditions. The
rules for the trades can be codified into the system so that there are no ambiguities
and the outcomes are deterministic. The ASK problem statement, issues, blockchain-
based solution, and outcomes are summarized in the quad chart in figure 2.9.

Use case: Airline consortium (ASK)

Problem statement: a decentralized blockchain-based
network of airlines

Issues with existing centralized model:

1. Inadequate and inefficient response to flight
 cancellations and delays
2. Multiple flights to same destination scheduled close
 to each other (may be for competition to popular
 routes and destinations)
3. Inefficient routing and higher cost to customers
4. No seat trading among unrelated airlines
5. No model for payment settlement among
 unrelated airlines

Proposed blockchain-based solution:

1. Airlines keep their traditional business and computing
 systems for routine business.
2. On the side, they also participate as members in a
 decentralized consortium using a blockchain platform
 (Ethereum).
3. ASK consortium addresses issues above by ad hoc
 sales of seats, verified and validated by ASK rules and
 conditions using smart contract functions.
4. Seamless payment settlement is enabled.
5. All transactions recorded on blockchain for dispute
 resolution and for business analytics.

Benefits:

1. Saves time, effort, and cost for the customers as well
 as the airlines
2. Better customer experience
3. Efficient use of airline resources (seats, flights)
4. Opportunities for collaboration among airlines,
 benefiting customers as well as the airlines
5. Seamless payment settlement system
6. Better management of emergencies
7. Potential for token-based airline-to-airline business
 model
8. An innovative operational model for the airline
 industry as a whole

Figure 2.9 ASK quad chart: use case, issues, blockchain solution, and benefits

39Decentralized airline system use case

The airline representatives (on behalf of the airlines) can initiate the trades proac-
tively or reactively in response to customer demand or as warranted by circum-
stances such as weather-related cancellations. In this use case, you’ll limit the scope
to the elemental operation of peer-to-peer sales of flight seats among airlines.
Enforcement of agreed rules of engagement and a seamless payment system is also
enabled by the blockchain, alleviating the traditional business concerns of compet-
ing airlines. The participating airlines expose secure, standard APIs for simple que-
ries about the availability of flight seats. These queries are like those you might post
on a travel website like Kayak or Expedia (intermediaries), but with one significant
difference: they are initiated programmatically by the software applications, and
there are no intermediaries. An application requests trades from the airlines directly
on your behalf.

2.6.2 Sequence of operations

Here are the steps followed by two airlines, A and B, that are not necessarily known to
each other and that operate beyond the boundaries of traditional trust. In other
words, they don’t have a conventional business partnership such as code-sharing and
alliances. How can the airlines trust each other to verify and record the transactions?

 Consider this everyday situation: your sister wants to borrow $10, all in $1 bills. You
take the bills out of your wallet, count them, verify there are 10 $1 bills, and hand
them to her. She pockets the bills and leaves. She does not count them again because
she trusts you.

 Now imagine the same transaction at a checkout counter. You count out (verify) 10
$1 bills right in front of the checkout clerk and hand the money to her. In this case,
the clerk verifies that you have given her the right number of bills by counting them
again. Why? You two are decentralized entities that don’t know each other well
enough to trust each other.

 That is the situation with airline A and airline B, which are not known to each
other. In ASK, they rely on the trust established by the blockchain by verifying and
recording the transactions. In addition to the two airlines, other stakeholders may ver-
ify the transactions and record the transactions as witnesses.

 Let’s analyze the operations indicated in figure 2.10 to understand the role that a
blockchain plays in a decentralized system as a verifier, validator, and recorder. Figure
2.10 shows the numbered sequence of operations. Follow the operations in the
sequence numbered to get the operational details discussed.

40 CHAPTER 2 Smart contracts

1 A customer initiates a change of flight seat that they hold on airline A.
2 An agent or application at airline A verifies and validates the request through

smart contract logic shared among the ASK consortium members.
3 Once verified, the request Tx is confirmed and recorded in a distributed

immutable ledger. Now everyone in the consortium knows that a legitimate
request has been made.

4 In the simplest design, an agent at airline A sends the verified and validated
request (VVRequest) to airline B. (Alternatively, we could use a broadcast model
in which many airlines get the request, and any one of them could respond.)

5 An agent or application at airline B checks the airline’s database to check for
availability.

6 An agent at airline B responds through shared smart contract logic that verifies
and validates the common interests and shared rules of the consortium.

Figure 2.10 Operations of participants in a decentralized airline system

Airline A

4

Own unshared
applications and DB

P2P payment
settlement from escrow

11 Airline B

5

VVRequest

VVResponse

Validate and verify

8

Customer
request and
response

Validate and verify

11

2

Record on a
distributed ledger

Record on a
distributed ledger

3

3

Shared logic

Exact copy of ledger

6

7

9

Simultaneously created, no sharing through
emails, messages or API calls

10

Confirmation to customer

7

11

1

41Airlines smart contract

7 Once verified, the response Tx is confirmed and recorded in a distributed
immutable ledger. Now everyone in the consortium knows that a response has
been sent.

8 Airline B sends the response (indicated by VVResponse) to the agent at airline A.
9 Airline A updates its database, noting that a change has been made.

10 An agent at airline B sends the customer the information for the flight seats and
other details. (Note that airline B holds its data assets and transfers them
directly to its known customer, not to airline A.)

11 Payments are settled through peer-to-peer Txs, using the escrow or deposit that
participating airlines hold in their shared smart contract. The payment settle-
ment can be embedded in other suitable operations in the system but will be
handled by the shared smart contract and recorded in the ledger. This settle-
ment is automatically carried out by the smart contract logic.

Note that the request, response, and payment settlement are simultaneously recorded
by the stakeholders of the consortium. This concept is illustrated by two of each of
steps 3, 7, and 11 in figure 2.10, which shows only two airlines: A and airline B. You
can extrapolate this two-participant scenario to a larger-scale scenario with N airline
participants.

 Figure 2.10 is a dissection of one simplified operation. Still, you can imagine how
this automatic verification and validation and the distributed ledger could solve other
problems discussed in the airline scenario. These features can be further leveraged
for other intelligent applications and token-based payment systems, as you’ll see in
chapter 10.

2.7 Airlines smart contract
Now let’s design the use case model and contract diagram by applying design princi-
ples 1, 2, and 4 (design, use case, contract diagram). Figure 2.11 shows the ASK use
case diagram and contract diagram. These diagrams will help you in structuring and
developing the smart contract code.

DESIGN PRINCIPLE 1 Design before you code, develop, and deploy a smart contract
on a test chain, and thoroughly test it before you deploy it on a production blockchain,
because when the smart contract is deployed, it is immutable.

DESIGN PRINCIPLE 2 Define the users of and use cases for the system. Users are
entities that generate the actions and the input and receive the output from the sys-
tem you’ll be designing.

DESIGN PRINCIPLE 4 Define a contract diagram that specifies the name, data
assets, functions, and rules for execution of functions and access to the data.

42 CHAPTER 2 Smart contracts

Use the two design diagrams in figure 2.11 to discover the users, data assets, rules,
roles, and functions.

2.7.1 Peer participants, data assets, roles, rules, and transactions

Now let’s apply design principle 3 to code the smart contract’s data structures and
functions. Identifying the participants, their roles, the assets they control, and the
related transactions is a common first step in any standard design process. This step is
even more critical for users that do not necessarily operate in the same environment
or within the business organization.

USERS

You first identify the users of the system as peer participants. This term is used to
emphasize that they interact with one another in a peer-to-peer fashion, without any
intermediaries. In the ASK use case, the agents acting on behalf of their airlines are the
peer participants. They act on a request from a customer to address the cancellation of
a flight. The ASK consortium authority will have a monitor, whom you will refer to as the
chairperson of the consortium. This consortium does not mean centralization, because

fromAirline

chairperson

toAirline

register

unregister

request

response

settlePayment

Airlines

address chairperson

mapping membership

mapping balance

struct reqDetails

modifier onlyChairperson

modifier onlyMember

register()

unregister()

reqSeats()

responseToReq()

settlePayment()

Data

Rules for
validation

Functions

Smart contract name

Figure 2.11 ASK use case and contract diagrams

DESIGN PRINCIPLE 3 Define the data assets, peer participants and their roles, rules
to be enforced, and transactions to be recorded for the system you’ll be designing.

43Airlines smart contract

this monitoring or chairperson role is periodically circulated among the consortium
members. The chairperson does not manage any central database. The database of
each airline is safe within their firewalls. The shared data is stored in the distributed led-
ger of the shared blockchain.

ASSETS

The data assets are the flight seats and the funds held by the peer participants. We
learned in chapter 1 that one of the fundamental tenets of a decentralized system is
that peer participants—not an intermediary—hold their own assets.

ROLES

The following are the roles:

 Agents acting on behalf of the airlines can enroll or self-register by using the
register() function with an escrow/deposit; this action makes them (airlines)
members of ASK.

 Agents (of members only) can request flight seats.
 Agents acting on behalf of the airlines can check their centralized databases for

availability and reply.
 Peers settle the payment between themselves if seats are available.
 The chairperson of the consortium has the sole authority to unregister mem-

bers and return leftover deposits.

The definition of roles is critical in an automated decentralized system, so you want to
be certain that authorized participants initiate the requests. Agents can be human or
software applications.

TRANSACTIONS

A typical process of buying flight seats may involve many operations and interactions
with various subsystems, such as databases. Let’s refer to operations that need to be
verified, validated, confirmed, and recorded by all parties as the transactions, or sim-
ply Txs.

RULES
The contract diagram in figure 2.11 (section 2.7) shows new elements that did not
appear in the counter use case: modifiers. Modifiers are special elements of a smart
contract, representing the rules that act as gatekeepers to control access to data and
functions. Only valid members (onlyMember) can transact on the system, and only the
chairperson (onlyChairperson) can unregister any airline.

DEFINITION Modifiers are a language feature that supports explicit specifica-
tion of rules for validation and verification. These modifiers are the gatekeep-
ers that do the verification and validation, and thus are specifically meant for
realizing trust.

Recall from chapter 1 that the blockchain is a trust intermediator, which means that it
automates the process of verification and validation for trust establishment in its code

44 CHAPTER 2 Smart contracts

(smart contracts). Modifiers are features that enable this trust intermediation. Here’s
how it works:

 You specify the rules or conditions, using a control structure called a modifier.
Solidity language provides the modifier feature to code the rules.

 Modifiers are used for specifying who can access the functions and who can
access the data, and also for validating data uniformly.

The ASK codes demonstrate the use of modifiers in a smart contract with two modifi-
ers: onlyMember and onlyChairperson. You’ll learn more details about modifiers in
chapter 3.

2.7.2 Airlines smart contract code

Now you’re ready to enter the working code for a basic Airlines smart contract, pro-
vided in the Remix IDE (see the next listing). If the pragma line gives an error for the
version, choose the correct version by looking at the compiler version in the top-right
section of the Remix IDE window.

pragma solidity ^0.6.0;
 contract Airlines {
 address chairperson;
 struct details{
 uint escrow; // deposit for payment settlement
 uint status;
 uint hashOfDetails;
 }

 mapping (address=>details) public balanceDetails;
 mapping (address=>uint) membership;

 // modifiers or rules
 modifier onlyChairperson{
 require(msg.sender==chairperson);
 _;
 }
 modifier onlyMember{
 require(membership[msg.sender]==1);
 _;
 }

 // constructor function
 constructor () public payable {

 chairperson=msg.sender;
 membership[msg.sender]=1; // automatically registered
 balanceDetails[msg.sender].escrow = msg.value;
 }

 function register () public payable{

Listing 2.3 Smart contract code for ASK (Airlines.sol)

Airline data
structures

Airline account payments
and membership mapping

Modifier for
onlyChairperson rule

Modifier for
onlyMember rule

Functions
of the

contract

Usage of msg.sender
and msg.value for a
payable function

45Airlines smart contract

 address AirlineA = msg.sender;
 membership[AirlineA]=1;
 balanceDetails[msg.sender].escrow = msg.value;
 }

 function unregister (address payable AirlineZ) onlyChairperson public {
 if(chairperson!=msg.sender){
 revert(); }
 membership[AirlineZ]=0;
 // return escrow to leaving airline: verify other conditions
 AirlineZ.transfer(balanceDetails[AirlineZ].escrow);
 balanceDetails[AirlineZ].escrow = 0;
 }

 function request(address toAirline, uint hashOfDetails) onlyMember
 ➥ public{
 if(membership[toAirline]!=1){
 revert(); }
 balanceDetails[msg.sender].status=0;
 balanceDetails[msg.sender].hashOfDetails = hashOfDetails;
 }

 function response(address fromAirline, uint hashOfDetails, uint done)
 onlyMember public{

 if(membership[fromAirline]!=1){
 revert(); }
 balanceDetails[msg.sender].status=done;
 balanceDetails[fromAirline].hashOfDetails = hashOfDetails;
 }

function settlePayment (address payable toAirline) onlyMember payable
 public{
 address fromAirline=msg.sender;
 uint amt = msg.value;
 balanceDetails[toAirline].escrow = balanceDetails[toAirline].escrow
 + amt;
 balanceDetails[fromAirline].escrow =
 balanceDetails[fromAirline].escrow - amt;

 // amt subtracted from msg.sender and given to toAirline
 toAirline.transfer(amt);
 }}

Let’s take a look at the new Solidity data types introduced by this smart contract.
These data types include

 address to refer to the identity of the chairperson.
 struct to collectively define the data of the airlines, including the escrow or the

deposit.

Usage of msg.sender
and msg.value for a
payable function

Functions of
the contract

Functions of
the contract

Functions of
the contractSmart

contract
account
transferring
amount to
an external
account

46 CHAPTER 2 Smart contracts

 mapping to map account addresses (identities) of members to their details. (A
mapping is like a hash table.)

 modifier definitions for memberOnly and chairpersonOnly. (You’ll learn about
these definitions in chapter 3.)

These data types are followed by the function definitions: constructor(), register(),
request(), response(), settlePayment(), and unregister(). It’s important to note
that the airlines have to execute their regular functions and checks by using their
existing systems. Note the use of the msg.sender, msg.value, and payable features
introduced in section 2.5. The smart contract only takes care of the extra functionality
needed for the decentralized interaction with other airlines.

2.7.3 ASK smart contract deployment and testing

Before you start working with the Airlines smart contract, make sure that you’ve
familiarized yourself with the Remix IDE, using the Counter use case discussed earlier
in section 2.3. Now create a Solidity file called Airlines.sol, and enter the code from
listing 2.3, available in the codebase of this chapter. Compile it, using the Compile
command on the menu; select JavaScript VM as the environment; and click Deploy &
Run transactions icon. Now you are ready to deploy and test the application on the
simulated VM provided by the Remix IDE.

 The chairperson is a legitimate peer airline, so choose the chairperson’s address in
the left panel below the VM simulator, enter a value for escrow of 50 ether, Click
Deploy and Run transactions icon, and click the Deploy button at the center of the
left panel. The bottom pane shows a deployed smart contract with its address and a
down arrow. When you click the down arrow, you expand the web interface to the
deployed application, displaying all the public functions and data for you to interact
with, and you’ll be able to observe the output from the function execution. All these
items are shown in figure 2.12. In the Remix IDE, you’ll observe that the functions of
the user interface are color-coded:

 Orange for a public function with no validation rules.
 Red for functions with rules coded by modifiers.
 Blue for access functions that are for viewing any public data. All public func-

tions are available for viewing through a blue button.

NOTE Please note that the color scheme of the interface keeps changing.
The colors may not be the same as the ones displayed here.

The constructor is used for the deployment of the contract when you click the Deploy
button. The transaction created is displayed in the console of your Remix IDE, as
shown in figure 2.13.

 Now you’re ready to test the other functions: register(), request(), response(),
settlePayment(), and unregister(). You’ll observe that the simulated VM has many
accounts for testing purposes, which are listed in the Account drop-down box at the

47Airlines smart contract

top of the left panel. Some account numbers (five from the bottom) from the list are
repeated in table 2.2, along with their allocations to the roles you identified: the chair-
person of the ASK consortium, toAirline, and fromAirline.

ASK smart contract address

ASK user interface

Figure 2.12 Deployed
Airlines smart contract
and its UI

Tx successful
and confirmed

Tx mined: added to
the blockchain

Constructor execution
created this transaction.

Figure 2.13 Transaction for Airlines constructor (recorded/mined)

48 CHAPTER 2 Smart contracts

NOTE These five accounts in table 2.2 used to be the only five accounts in the
previous version of Remix IDE (2019). The newer version of Remix IDE
(2020) has 10 more test accounts that are random, which means that they are
different every time you reload. I’ve chosen to use the permanent five
accounts at the bottom of the Account drop-down list in the Remix IDE. Be
aware of such changes in the future, and be ready to adapt.

You need only the first three account numbers for testing purposes. Copy them from
the IDE, and store them in a notepad application so that it is easy for you to copy and
paste them in the interface.

TEST PLAN DESCRIPTION

NOTE I’ve described a test plan followed by actual instructions. If you’re a
beginner, review both, but if you’re an advanced developer, you may choose
to do either.

Here’s a simple test plan to verify the execution of your functions in the IDE:

 constructor() function—The constructor is executed upon deployment of the
contract. Set the Value field in the blockchain simulator panel at the top left to
50 ether, as shown in figure 2.14. The selected account is that of the chairper-
son. The meaning of this initialization is that the chairperson deposits a value
of 50 ether. Now click the Deploy button. You’ll see the account balance go
down by this amount after the constructor is executed.

 register() function—Any airline can self-register with a deposit. Make sure
that the fromAirline account is selected in the Account drop-down list in the
top-left panel. This function needs two parameters: the account address and the
escrow value. The account address is implicitly provided by msg.sender. Enter 50
ether for the escrow value; then click the Register button to execute the func-
tion. Repeat the same process for the toAirline address in the Account box.

Table 2.2 Account numbers for Airlines smart contract

Account address or identity Airline

0xca35b7d915458ef540ade6068dfe2f44e8fa733c ASK consortium chairperson

0x14723a09acff6d2a60dcdf7aa4aff308fddc160c fromAirline (for testing airline A)

0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db toAirline (for testing airline B)

0x583031d1113ad414f02576bd6afabfb302140225 Another airline

0xdD870fA1b7C4700F2BD7f44238821C26f7392148 Yet another airline

49Airlines smart contract

 request() function—Make sure that the fromAirline account is selected in the
Account box. Then, in the function parameter box, paste in the toAirline
address, and supply any number (say, 123) to represent the hash of the off-
chain details of data. (You’ll learn about off-chain data and hash in chapter 5.)
Click the Request button.

 response() function—Make sure that the toAirline account is selected in the
Account box. In the function parameter box, paste in the fromAirline address,
and supply any number (say, 345) to represent the hash of off-chain details of
data and a third value to indicate whether the request was accepted (1) or
declined (0) (based on the availability of seats, of course). Click the Response
button.

 settlePayment() function—Make sure that the fromAirline account is
selected in the Account box. In the function parameter box, paste in the
toAirline address, and specify an amount to be paid (say, 2 ether) for settle-
ment. Click the settlePayment button.

 balanceDetails() function—Click the balanceDetails button, with the from-
Airline address as a parameter. You see all the details you entered there, but
with the escrow reduced by 2 because it paid for seats. If you repeat this process
for the toAirline address, you’ll see 2 more ethers in its (toAirline) escrow,
which verifies that all your functions worked as expected. You should see this

Figure 2.14 Before and after deployment of the Airlines smart contract

JavaScript
simulated test environment

ASK chairperson’s account
with balance 100 ether

Deposit escrow of 50 ether

Before deploying ASK smart contract

After deploying ASK smart contract

Chairperson’s balance
– deposit
– execution cost of constructor

50 CHAPTER 2 Smart contracts

verification reflected in the balances in the blockchain emulator panel’s
accounts.

 unregister() function—Unregistering can be done only by the chairperson,
because there may be conditions to be checked before the escrow is returned to
the airlines.

TEST INSTRUCTIONS

Following are step-by-step instructions for the test sequence discussed in the previous
plan. This list tests all the items of the Airlines smart contract that you see in the
(Remix) UI. The execution details are displayed in the output console. You should be
able to see whether the function executed successfully (a green check mark on the
console) and many other details related to transaction execution and confirmation.
Follow these steps to run the tests:

1 Restart the Remix IDE. This action resets the blockchain environment to its
starting point. You can restart any time you make a mistake during the learning
process. Clear the console, using the O symbol in the top-left corner of the con-
sole (bottom panel).

2 Copy listing 2.3 (Airlines.sol) into the editor window. Make sure to use the cor-
rect version of the compiler in the pragma line.

3 Click Compile in the menu in the top-right corner; then click Deploy.
4 Configure the following settings in the blockchain emulator panel and then

click Deploy:
a Environment—JavaScript VM
b Account—the first address (the chairperson’s account, such as 0xca3 . . .)
c Value—50 ether (not Wei)

Refer to figure 2.14 for details.

5 Open the smart contract by clicking the down arrow next to Deployed Con-
tracts.

6 (Self-)Register airlines A and B:
a Set Account to the fromAirline (airline A) address (0x147 . . .).
b Set Value to 50 ether (not Wei).
c Click Register.
d Repeat this process for the toAirline (airline B) address (0x4b0 . . .).

7 Transact one request and one response from Airline A to Airline B and back:
a With airline A’s address (0x147 . . .) selected in the Account box, in the

request() function’s parameter box, paste in the address of airline B (0x4b0
. . .), enter 123 for the hash details, and click Request.

b With airline B’s address (0x4b0 . . .) selected in the Account box, in the
response() function’s parameter box, paste in the address of airline A
(0x147 . . .), enter 123 for the hash details and 1 for success, and then click
Response.

51Airlines smart contract

8 To test the settlePayment() function, with the address of airline A in the
Account box, enter 2 ether in the Value box, paste the address of airline B in
the function’s parameter box, and click settlePayment. Figure 2.15 shows the
updated account balances when this step is complete.

9 Unregister, using airline B’s address (0x4b0 . . .) as a parameter. The address of
the chairperson (0xca3 . . .) must be selected in the Account box; otherwise, it
will revert.

10 Click balanceDetails, and use airline B’s address (0x147 . . .) as a parameter to
see the internal balance of this account. You can also check all the account bal-
ances in the top-left panel.

Here ends our end-to-end discussion of smart contract design, deployment, and test-
ing in the Remix IDE. Make sure that you review and understand the code and the
design. In chapter 3, we’ll further develop the core blockchain concept of the smart
contract, and you’ll see how to enhance it to make it a complete Dapp.

Account addresses and balances after a request/response/payment Txs
Airline A has 47.99 . . . because it paid 2 ethers to Airline B for seats.
Airline B has 51.99 . . . ethers.
The small amounts missing from these balances are the Tx fees.

Figure 2.15 Account
balances after
completion of step 8

Where’s the immutable ledger?
If you’re wondering where the blockchain’s immutable recording is, click Transac-
tions Recorded in the middle of the left panel, and then click the icon for storage (the
floppy disk). A .json file opens in the editor space. This content of this file shows the
immutable recording with timestamps of transactions recorded and all the details.
You can use this file for any data-analytics applications, as well as for verification
and review.

52 CHAPTER 2 Smart contracts

2.8 Smart contract design considerations
Smart contracts are immutable code, like the hardware integrated circuit chips in lap-
tops, smartphones, and computers. In hardware chips, the code is etched in the sili-
con circuits. Similarly, when smart contracts are deployed, their code is final and
cannot be updated unless special provisions or escape hatches are built in. You’ll learn
about these escape methods in later chapters.

 We’ve also seen that smart contracts are shared with all the stakeholders so that
they can independently verify, validate, and reach consensus on the transactions to be
recorded in the distributed immutable ledger of the blockchain. Therefore, you must
design and test a smart contract thoroughly before deploying it for production use.
Though a smart contract is a software module, you cannot change its contents (unlike
the weekly updates you get for many apps and operating systems). All these character-
istics of a smart contract demand careful design as a precoding step and thorough
testing as a postcoding step.

 The smart contract is the good, the bad, and the ugly of blockchain technology. It
is a powerful feature, but improper design and coding of a smart contract have resulted
in significant failure. The Decentralized Autonomous Organization (DAO) hack in the
early days of Ethereum, for example (http://mng.bz/yrYJ), culminated in the loss of
several hundred million dollars, and the recent Parity wallet lockup (https://blog
.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7) resulted in funds
getting locked up by code. The idea of the DAO was to raise cryptocurrency funds from
investors through a smart contract and invest them in various instruments decided by
the smart contract. In this case, a vulnerability in the smart contract code was exploited
to funnel funds into a hacker’s account. In the case of the Parity wallet, the accidental
deletion of a function resulted in locking up the funds held by a smart contract. The
former was a hack, and the latter was a careless accident. An important lesson to learn
from these high-profile failures is that smart contracts require meticulous design and
testing before deployment. These mishaps further emphasize the importance of follow-
ing the best practices in the design and development of a smart contract.

2.9 Best practices
Now that you’ve been introduced to smart contract design and development, and to
the features specific to blockchain application development, this is an appropriate
time to review some best practices:

 Make sure that your application requires blockchain features. Blockchain is not a solu-
tion for all applications. In other words, blockchain-based solutions and smart
contracts are not panaceas for any problem you have. So what are they good
for? Recall from chapter 1 that blockchain solutions are most suitable for appli-
cations that
– Are decentralized, meaning that participants hold the assets and are not nec-

essarily co-located

http://mng.bz/yrYJ
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

53Summary

– Involve peer-to-peer transactions without intermediaries
– Operate beyond the boundaries of trust among unknown peers
– Require validation, verification, and recording in a universally timestamped

immutable ledger
– Have autonomous operations guided by rules and policies

 Make sure that you need a smart contract for your application. Understand that the
smart contract will be visible to all the participants in the chain and will be exe-
cuted on the full nodes. You need a smart contract when you need a collective
agreement based on rules, regulations, or policies enforced and when the deci-
sions (and the provenance for them) must be recorded. A smart contract is not
for single-node computations. It does not replace your client/server or inher-
ently stateless distributed solutions. Smart contracts are usually part of a
broader distributed application—the part that requires the services provided by
the blockchain.

 Keep the smart contract code simple, coherent, and auditable. The state variables and
functions specified in a smart contract should each address a single problem.
Do not include redundant data or unrelated functions.

 Be aware that Solidity is updated frequently. Solidity is still in its infancy, and its fea-
tures and versions change much more frequently than those of more mature
languages like Java. Be sure to change the compiler version to the one that
matches your smart contract code.

2.10 Summary
 Blockchain-based peer-to-peer interaction will eliminate the overhead of inter-

mediaries by enabling scalable automatic direct transactions.
 A smart contract is an executable code on the blockchain that allows for the

realization of transactions other than cryptocurrency transfers.
 The design flow of a smart contract begins with a problem statement, followed

by the user and asset analysis, design of use case and contract diagrams, and
pseudocode.

 A particular high-level language is used for smart contract development for a
specific blockchain. In this book, we’ll use the Solidity and Ethereum block-
chains.

 Unlike in regular programming, smart contracts on blockchain require a par-
ticular blockchain environment for testing. A one-stop integrated web-based
development environment called Remix IDE can be used to deploy and test
your contracts.

 Thanks to blockchain advancements, new disruptive business models may
emerge that result in improved customer benefits and experiences, cost-cutting,
and better management of emergencies, not only for airlines, but also for many
other consumer-facing businesses.

54

Techniques for
 trust and integrity

Trust and integrity are essential requirements for any system, but they are especially
critical in a decentralized system where the peer participants operate beyond the
traditional boundaries of trust. In this chapter, you’ll learn how to add elements
that establish trust and integrity to your blockchain-based solution, to support
robust decentralized operations.

 Imagine that your neighbors want to borrow your food processor. You know and
trust them because of your prior interactions, so you don’t hesitate to share your

This chapter covers
 Establishing trust through verification, validation,

and recording

 Enabling trust using Solidity language features

 Using finite state machine diagrams to
characterize application phases

 Incremental development of smart contracts
using the Remix IDE

 Tips for testing smart contracts

55Essentials of trust and integrity

food processor with them. This action is a peer-to-peer transaction without an inter-
mediary. What if you buy something online? You need a credit card and a bank
account or some similar instrument whereby your credentials have been verified. The
credit card company undertakes the responsibility of establishing trust in you for the
online vendor. In this case, trust is quantified based on information like your credit
rating and other credentials. Thus, building trust between the vendor and customer
involves at least one intermediary and maybe more.

 The cases I’ve described are just two of the many possibilities in the trust contin-
uum, from simple peer-to-peer interactions between neighbors to complex financial
systems. But how do you resolve the trust in a decentralized system in which no organi-
zations or individuals act as intermediaries? Who or what fills this role in such systems?
Blockchain can. It is ideally positioned to provide automated trust intermediation
through its innovative infrastructure, unique protocol, and distributed ledger technol-
ogy. It addresses trust and integrity by verification, validation, and protocol-level con-
sensus, and through its distributed immutable recording.

 In this chapter, you’ll learn about trust and integrity in the context of blockchain-
based decentralized systems. You’ll learn to design smart contracts with additional
techniques for improving trust in the system you developed in chapter 2. Often, the
techniques for enabling trust, such as access control, encryption, and digital signa-
tures, also address the integrity requirements of a system. We’ll focus on the access
control aspect in this chapter, and explore cryptography and hashing techniques in
chapter 5.

 The chapter introduces a new decentralized application for balloting in a digital
democracy (Ballot), as well as a new design diagram in finite state machines (FSM).
This chapter also illustrates the use of Solidity features including modifiers and
require() and assert() declarations to implement verification and validation.

3.1 Essentials of trust and integrity
The constituents of trust and integrity are represented by the two quad charts in fig-
ure 3.1, one showing the components of trust and the other showing the elements of
integrity. Spend a few minutes reviewing figure 3.1, and identify the various compo-
nents of trust and integrity before we explore these concepts further.

3.1.1 Trust

Trust means different things in different contexts. Trust is an essential criterion for
the success of any system. So let’s first define trust in the context of blockchain-based
decentralized systems.

DEFINITION Trust is a measure of confidence in the credibility of a peer partic-
ipant in a system. Trust in a blockchain-based system is established by verifica-
tion and validation of relevant participant data and transactions, and by
immutable recording of appropriate information done with the consensus of
the stakeholders.

56 CHAPTER 3 Techniques for trust and integrity

You establish trust by verification and validation; this aspect is shown in figure 3.2 as fun-
damental elements of trust (1a and 1b). Often, people use the terms verification and val-
idation interchangeably. For smart
contract development, we’ll differenti-
ate between these two terms. This clar-
ification will aid in better design and
development of smart contracts.

 To understand the difference
between verification and validation, let’s
consider these real-world examples:

 Verification (1a) is similar to a
Transportation Security Admin-
istration (TSA) agent checking
your identification at an airport
security checkpoint. Verification
is about general rules.

 Validation (1b) is similar to an air-
line’s gate agent making sure that
you have a valid boarding pass.
Validation is about application-
specific rules.

Consensus

ValidationVerification

Recording

Trust

Achieved using smart contract
functions and modifiers

Distributed
immutable
ledger of
blockchain

Defined in
blockchain
protocol

Identity Security

PrivacyConfidentiality

 Integrity

Application of
cryptographic
and hashing
algorithms
and techniques

1a 1b

1c1d

2a 2b

2c2d

Figure 3.1 Essential
components of trust
and integrity

Consensus

ValidationVerification

Recording

Trust

Achieved using smart contract
functions and modifiers

Distributed
immutable
ledger of
blockchain

Defined in
blockchain
protocol

1a 1b

1c1d

Figure 3.2
Elements of trust

57Essentials of trust and integrity

 The recording (1d) is similar to TSA’s and the airline’s centralized database
updated with the traveler’s status. In the case of blockchain, the differences are
that recording is on a distributed immutable ledger and the use of consensus
protocol (1c).

You can think of verification as dealing with general or global requirements within a
problem space and validation as being application- or data-specific. In the case of a
blockchain application, the transactions are verified and validated according to gen-
eral rules as well as application-specific rules and conditions.

 The bottom two cells (1c and 1d) of the trust quad chart in figure 3.2, consensus
and immutable distributed recording, are the responsibility of the blockchain proto-
col. The purpose of the consensus process is to make sure that a consistent set of
transactions (a block) is recorded on the blockchain. As you’ll recall from chapter 1,
nodes form the blockchain network. An exact copy of each block, chosen by the con-
sensus process, is recorded on all the distributed nodes. The chain of blocks is
deemed to be immutable because each of the nodes or stakeholders has a copy; no
one node can make changes without its copy going out of sync with the others. The
blockchain protocol and infrastructure determine the necessary rules and software for
these two cells (consensus and recording) of the trust chart. You can focus on these
two aspects of trust when you develop and contribute at the protocol level. As an
application developer, you’ll design only the application-specific verification and vali-
dation (the top two cells, 1a and 1b).

3.1.2 Integrity

Integrity is about the truthfulness of the participants, the messages they send, the
data, and the operations of the system under consideration.

DEFINITION Integrity, in the context of blockchain, means ensuring the secu-
rity and privacy of data and confidentiality of transactions.

Integrity, shown in the second quad of figure 3.1, begins with a method for uniquely
identifying the peer participant on the node. In a decentralized system, no username
and password identify who you are, as in a centralized system. Blockchain account
address is a simple way to specify a unique identity for a participant. The elements of
integrity—identity, security, privacy, and confidentiality (figure 3.1, 2a to 2d)—are
based predominantly on the private-public key pair concept. You’ll learn in chapter 5
how to implement security and privacy aspects for participant data, using a combina-
tion of cryptography and hashing algorithms. Likewise, you’ll learn about confidenti-
ality (figure 3.1, 2d) and its implementation in a micropayment channel application
in chapter 7.

 In this chapter, you’ll design a smart contract for application-specific trust and
integrity. The ballot smart contract illustrates verification, validation, and identity and
privacy aspects. Let’s explore applying these features to solve a well-known problem.
Digital democracy has been a quest ever since the advent of the internet. Balloting is

58 CHAPTER 3 Techniques for trust and integrity

an exciting topic that garners the interest of a wide range of people. We’ll solve a bal-
loting problem that allows for electronic voting by a set of decentralized participants.

3.2 Digital democracy problem
Digital democracy encompasses many things, from simple digital identity cards in India
to e-residency in Estonia. In the context of this chapter, you’ll be concerned with sys-
tems that enable democracy by using digitization, such as internet-based communica-
tion and information systems—in particular, using internet-based electronic voting
systems instead of paper ballots or mechanical machines. Let’s begin discussing the
problem with a problem statement.

PROBLEM STATEMENT Consider an online ballot application. People vote to
choose a proposal from a set of proposals. A chairperson registers the people
who can vote, and only registered voters can vote (only once) on a proposal
of their choice. The chairperson’s vote is weighted twice (x2) as heavily as reg-
ular people’s votes. The ballot process goes through four states (Init, Regs,
Vote, Done), and the respective operations (initialize, register, vote, count
votes) can be performed only in the corresponding states.

3.2.1 Designing a solution

We’ll apply the design principles you learned in chapter 2, which are available in
appendix B. Please review these principles before starting the design process.

 Here are the recommended steps for solving the ballot problem:

1 Apply design principles 1, 2, and 3 to design the use case diagram; use that dia-
gram to discover the users, data assets, and transactions.

2 Use design principle 4, design the contract diagram that defines the data, modifi-
ers, or rules for verification and validation, and functions.

3 Using the contract diagram, develop the smart contract in Solidity.
4 Compile and deploy the smart contract in the Remix IDE, and test it.

This ballot problem offers an opportunity to add one more UML design diagram: that
of a finite state machine (FSM) model to represent the phases of the voting process.

3.2.2 Use case diagram

Let’s analyze the ballot problem using the UML diagram use case diagram. This dia-
gram is the starting point for achieving the design principles of identifying the users,
assets, and transactions. The use case diagram is shown in figure 3.3. The main actors
and roles are as follows:

 The chairperson can register voters and also self-register and vote.
 Voters can vote.
 Anybody can request the winner or results of the ballot process.

59Digital democracy problem

In this simple case, every call to the reqWinner() function will count the votes.
Although this implementation is not efficient, you can leave it as such for now. In later
versions, you can improve on this codebase. The diagram also captures one of the
requirements of the problem: the fact that the chairperson is also a voter. The IS-A
specialization relationship shows this: the chairperson is a voter, as shown in figure
3.3. The use cases are register, vote, and reqWinner; the function count votes is an
internal function, as shown in the count votes use case of the diagram.

3.2.3 Incremental development of code

The code for the balloting problem will be developed in four incremental steps so
that you can to learn the smart contract development process. Also, this process will
allow you to learn Solidity language features by example. The four incremental steps
in the development are as follows:

1 BallotV1—Define the data structures for the smart contract, and test them.
2 BallotV2—Add the constructor and the function to change the state of voting.
3 BallotV3—Add the other functions of the smart contract and a modifier to illus-

trate the use of Solidity features for enabling trust.
4 BallotV4—Add the trust elements require(), revert(), and assert(), and the

function access modifier.

register

Chairperson

Voter

vote

reqWinner

Use

Use

Use

Anybody

Use

IS-A Use cases

Actors

count votes

Figure 3.3 Ballot use case diagram

60 CHAPTER 3 Techniques for trust and integrity

Let’s now list the users of the system, data assets, and transactions based on the prob-
lem statement and the use case analysis.

3.2.4 Users, assets, and transactions

Now you’re ready to apply design principle 3. Recall from the problem statement that
the goal is for users to choose one of the many available proposals by voting on them.
Based on the use case analysis in figure 3.3, the following are the users of the ballot
system: the chairperson, the voters (including the chairperson), and anybody who’s
interested in the outcome of the balloting process.

 The data assets, in this case, are the proposals on which the voters are voting. You
also need to keep track of the voters, whether they have voted or not, and the weight
of their votes. (Recall that the chairperson is also a voter and that the chairperson’s
vote counts as double, weight=2.) Let’s use this analysis as a guideline and code the
two data items identified: voters and proposals, as shown in listing 3.1. The phases
of the voting specified in the problem statement are also coded into an enum or enu-
merated data type. enum is an internal data type provided by Solidity. A Voter type and
Proposal type are defined using the struct construct, and a special voter, chairper-
son, is also defined. A mapping data structure maps the voter account address to the
voter details, and an array defines the proposals (numbers) that are being voted on.

pragma solidity >=0.4.2 =<0.6.0;
contract BallotV1 {

 struct Voter {
 uint weight;
 bool voted;
 uint vote;
 }
 struct Proposal {
 uint voteCount;
 }

 address chairperson;
 mapping(address => Voter) voters;
 Proposal[] proposals;

 enum Phase {Init, Regs, Vote, Done}
 Phase public state = Phase.Init;
 }

You can enter this code in the Remix IDE. This step allows you to check the syntax of
the data items as well as the values of any public variables. Create a BallotV1.sol smart
contract, and copy in the contents of listing 3.1. If you have the just-in-time compiler
enabled (in the left panel of the Remix IDE), you see a red X mark next to any code
line with a syntax error. Correct any errors; then compile the code. You’ll see a check
on the compile icon in the panel on the left, indicating that the compile process was

Listing 3.1 Data items (BallotV1.sol)

Type Voter contains
the voter details.

Type Proposal contains proposal
details: for now, only voteCount.

Mapping of voter
address to voter details

Various phases (0,1,2,3) of voting,
state initialized to Init phase

61Digital democracy problem

successful. Make sure that the environment is set to the JavaScript VM, click the
Deploy & Run Transactions icon, and then click the Deploy button (orange) in the
middle of the left panel.

 You should see the user interface with one button: state. Click that button, and
you should see its value as 0 for the state value of Phase.Init. Now change the value
of the state to Phase.Done in the code editor. Repeat the compile and deploy steps,
and click the State button again. You should see the value of state as 3 for
Phase.Done. Three test runs are shown in figure 3.4. Note that the variable state is
available for user interaction (testing) because it was declared public in the code. If
you remove the public visibility modifier from the state, you will not see the state
button in the user interface.

 You’ve completed a simple exercise to make sure that all the data definitions are syn-
tax error-free. In the process, you also learned about a few more Solidity language
types—enums and arrays—and used structs, mappings, and the public visibility modi-
fier again. Note that the Remix IDE helps with incremental development of your code
by allowing you to check the syntax of the data elements before you add functions. This
step is useful for testing the data structures before you get into coding the functions.

Test 1: Variable state is public.
state is Phase.init(0).

Test 2: Variable state is public.
state is Phase.done(3).

Test 3: Variable state is not public.
state is not visible.

Figure 3.4 Remix user interface for three runs (state = 0, state = 3, state is not public)

62 CHAPTER 3 Techniques for trust and integrity

3.2.5 Finite state machine diagram

The use case diagram in figure 3.3 provides only static details; it has no way to depict
the dynamic timing and state transitions that the ballot process requires. Moreover,
the diagram doesn’t impose the order in which the operations should occur: registra-
tion period, voting period, and the determination of the winner. Do you now see the
need for another design diagram that depicts the system dynamics?

 To represent system dynamics, you’ll use a UML finite state machine, or FSM dia-
gram. The FSM is well founded in formal computer science and mathematics, but it is
also a versatile UML design diagram. It is an important diagram because it represents
the various state changes a smart contract goes through that are dependent on time
and other conditions. Often, the conditions and rules are based on various phases of a
real-world contract or process, which brings us to design principle 5.

DESIGN PRINCIPLE 5 Use a finite state machine UML diagram to represent sys-
tem dynamics such as state transitions within a smart contract.

In a voting process, voters are registered first, and there usually are deadlines for reg-
istration and voting. In some U.S. states, you have to be registered 30 days before the
election day, and the voting takes place and is completed in a single day for in-person
voters. If that is the case

 Registration has to be completed before voting and before a specific deadline.
 The functions for the ballot process proceed in a certain sequence.
 Voting is open only for a specified period.
 The winner can be determined only after the voting.

Let’s apply this design principle and capture the dynamics with a state diagram, as
shown in figure 3.5. This FSM is composed of

 States, including a starting state and one or more ending states, indicated by
double circles by convention

 Transitions that take you from one state to another
 Inputs that bring about the transitions (T=0, T+10 days, T+11 days)
 Zero or more outputs during transitions. Registration (Regs), voting (Vote), and

counting (Done), for example, happen in the states indicated.

Created

T = 0 T+10 days

Init

T+11 days

Time-based transitions

Registration happens in this state. Counting happens in this state.

 Regs Vote Done

Figure 3.5 FSM design of
the ballot state transitions

63Digital democracy problem

Earlier, we defined four phases or states representing the ballot problem. These four
phases are Init, Regs, Vote, and Done. The system begins its operation after initializa-
tion in the Init phase and then transitions into the Regs phase, where registration can
take place. After ten days (in this case) for registration, the system moves to the Vote
phase, in which voting goes on for a day, and then enters the (ballot) Done phase, at
which point the winning proposal can be requested. Transitions in this case are tempo-
ral, or time-driven; you can see this in figure 3.5, with T=0, T+10, and T+11 limiting the
duration of each phase. These dynamic rules for transitioning through the balloting
process have to be captured when you code the smart contract to enable trust.

 Now let’s translate these design representations into code, as shown in listing 3.2.
This listing, BallotV2.sol, has all the contents of BallotV1.sol from listing 3.1, plus a
constructor and an additional function: changeState(). The enumerated type Phase
is used for setting the state variable state. Your goal is to effect and observe the state
changes. Let’s assume that the ballot process’s chairperson is controlling when the
transitions happen by calling the changeState() function with a parameter value of 0,
1, 2, or 3 (representing the four phases).

// include the code from BallotV1.sol, not shown here

 enum Phase {Init, Regs, Vote, Done}
 // Phase can take only 0,1,2,3 values: Others invalid

 Phase public state = Phase.Init;

 constructor (uint numProposals) public {
 chairperson = msg.sender;
 voters[chairperson].weight = 2; // weight 2 for testing purposes
 for (uint prop = 0; prop < numProposals; prop ++)
 proposals.push(Proposal(0));

 }

 // function for changing Phase: can be done only by chairperson
 function changeState(Phase x) public {
 if (msg.sender != chairperson) {revert();}
 if (x < state) revert();
 state = x;
 }
 }

In listing 3.2, only the constructor for BallotV2 and the changeState() functions are
shown. When you copy this code into the Remix IDE, be sure to preface it with the
contents of listing 3.1. The complete BallotV2.sol is available in the codebase of this
chapter.

Listing 3.2 Solution with voting states (Ballotv2.sol)

Internally coded as 0,1,2,3

Constructor makes contract
deployer the chairperson

Number of proposals
is a parameter for the
constructor

State
changer
function

Only chairperson can change
state; otherwise, revert

State has to progress in 0,1,2,3
order; otherwise, revert

64 CHAPTER 3 Techniques for trust and integrity

 Let’s review the code. Initially, the state variable is set to Init by static initializa-
tion. The account (msg.sender) invoking the constructor is designated as the chair-
person. More appropriately, we could say that the chairperson initiates the ballot
process by deploying the smart contract. The number of proposals is initialized, and
the chairperson’s vote is given a weight of 2 (arbitrarily). Voting-phase changes are
affected by the function changeState(); you can enforce that only the chairperson
can change from one phase to another and that Phase can take only the values
{0,1,2,3} for {Init, Regs, Vote, Done}. You want the phases to progress from
Init to Done via Regs and Vote. Let’s explore how all this works:

1 Enter the code for the BallotV2 smart contract into the Remix IDE, and check
the state change functionality.

2 Compile and deploy the contract with 3 as a parameter when you click the
Deploy button, indicating that three proposals are available to vote on. Every
time you click Deploy, the value in the box to the right of it has to be set to the
number of proposals to be voted on.

3 Click the state button in the UI to show 0 as the value of the state.
4 Now click changeState, using 1 as a parameter, and check the value of state,

which will show 1 for Regs.
5 Repeat this test for the other parameter values.

You can also see functions reverting if invalid values are given for their parameters.
The Ethereum VM itself will throw an error if you give a negative value as a parameter
to the changeState() function.

 The code in listing 3.2 provides a general pattern for any smart contract that tran-
sitions through state changes in its design. In listing 3.2, the rules (for validation) for
the state transitions are stated as they are in any other common code, using if state-
ments. It is desirable to separate the definition of rules from the actual code of the
functions to emphasize the role of the smart contract as a trust intermediator. That’s
what we’ll do next.

3.2.6 Trust intermediation

Typically, verification, validation, and exceptions in problems are specified by rules to
be enforced and conditions to be checked. Additionally, in a blockchain-based appli-
cation, you should revert or abort any transactions that violate trust (represented by a
rule) to prevent bad or unauthorized transactions from becoming part of the
immutable ledger of the blockchain. This aspect is a key difference between block-
chain programming and a traditional distributed application development. How do
you implement these rules and requirements?

 Solidity provides various language features and functions that address these trust
requirements. These language features are as follows:

65Digital democracy problem

 Modifiers specify access control rules to verify and manage who has control of
data and functions to establish trust and privacy. (Perhaps only the chairperson
can register members, for example.) These modifiers are also called access modi-
fiers to distinguish them from the visibility modifiers (public and private) of
functions and data.

 The require(condition) declaration validates the condition passed as a param-
eter and reverts the transaction if the check fails. This feature is commonly used
for general validation of parameters (such as age > 21).

 The revert() statement allows you to revert a transaction and also prevent it
from being recorded on the blockchain. This feature is commonly used in mod-
ifier definitions.

 The assert(condition) declaration validates the condition of the variable or
data during the execution of a function and reverts the transaction if the check
fails. This feature is used for exceptions when you don’t want the condition to
fail, such as to validate the head count in the middle of the ocean during a
cruise! Another example is to stop your bill payment if there is not enough
money in your bank account.

3.2.7 Defining and using modifiers

As you learned in chapter 2, modifiers are a special programming language structure
offered by Solidity for implementing verification and validation rules in a smart con-
tract. Let’s first review how to define them and then dig into how to use them effectively.

 Listing 3.3 shows the syntax of a modifier, which is somewhat like a function definition:

 It has a header line with a name and parameter list.
 It has a body that specifies the conditions to be checked within a require

statement.
 This line is followed by __; , which represents the code that follows the modi-

fier at the actual location where it would be used. This symbol represents the
code that the modifier guards.

The next listing also shows an example use of a modifier. Here, it is verifying that the
state of the ballot process is in the correct phase, as specified by the parameter reqPhase.

modifier name_of_modifier (parameters)
{ require { conditions_to_be_checked};
 _;
}

modifier validPhase(Phase reqPhase)
{ require(state == reqPhase);
 _;
}

Listing 3.3 Modifier definition syntax and example

Modifier syntax

Actual modifier definition
for validPhase rule

66 CHAPTER 3 Techniques for trust and integrity

Why separate the modifier definition from the function definition? The idea is to sep-
arate the verification, validation, and exceptions so that the code clearly articulates
the rules that are being enforced by the smart contract for implementing trust and
integrity. The special keyword modifier can be used by a smart contract auditor (man-
ual or automatic) to make sure that all the rules are defined up front and used as
expected. When a modifier representing a rule is defined, it can be used any number
of times, like a function call. This pattern allows you to review the code locations
where rules are applied easily.

 Now let’s find out how a modifier is invoked within the code. Listing 3.4 shows an
actual function, register(), using the modifier validPhase. The modifier is located
in the header of the function. The traditional code for checking the condition is also
shown in the listing’s second line, commented out. You can see the elegance of the
modifier as opposed to this line (the if statement). A review of the function header
demonstrates that the state of the voting process is checked (it must be Phase.Regs)
before anything is done in the function.

function register(address voter) public validPhase(Phase.Regs) {
 //if (state != Phase.Regs) {revert();}
 if (msg.sender != chairperson || voters[toVoter].voted) return;
 voters[voter].weight = 1;
 voters[voter].voted = false;
 ...
 }

The use of modifiers as trust implementers (intermediaries) results in design principle 6.

DESIGN PRINCIPLE 6 Implement the verification and validation needed for
trust intermediation by using modifiers specifying the rules and conditions in
a smart contract. Typically, verification covers general rules about partici-
pants, and validation covers conditions for checking application-specific data.

Let’s put all these concepts together in the next composite design representation: the
contract diagram.

3.2.8 Contract diagram including modifiers

In this section, you’ll use the analysis and design completed so far to develop a con-
tract diagram (design principle 4; see appendix B) listing the data structures and
functions needed for coding the Ballot smart contract. In the contract diagram shown
in figure 3.6, you can see the definition of one modifier, validPhase, in the modifier
box after the data definition. In this case, only one example of a modifier is defined to
help you understand the modifier feature.

Listing 3.4 Use of a modifier

Modifier in the header of function; if the
condition is not met, revert the transaction

Equivalent
traditional

code

67Digital democracy problem

Note that the modifier validPhase has a parameter Phase reqPhase. In the functions
box of the contract diagram, you see the repeated use of the validPhase modifier in
the headers of three functions. Observe that the validPhase modifier is called with
three different actual parameters—Regs, Vote, and Done—from the headers of the
various functions, which illustrates the flexibility and reusability of the modifier.
Before each function, the modifier is applied and executed with the actual parameter
value. Inside the modifier, this actual parameter is compared with the current state of
the voting process. If it does not match the state at the time the function is called, the
function call is reverted, and it is not executed or recorded on the blockchain. This
validation is the role of the modifier.

 Now you can proceed to complete the Solidity code for the Ballot contract based
on the details specified in the contract diagram.

3.2.9 Putting it all together

The complete code in Solidity is given in listing 3.5. Only the functions are shown
because we already reviewed the data and modifier definitions in listings 3.1 through
3.4. Earlier, you saw only the templates of the functions; here, you see the completed
code. Note that the Phase component is included in this code to illustrate the state tran-
sitions, the FSM-based design of dynamics, and the use of modifier-based validation.

Ballot

 struct Voter { }

 Proposal[] proposals;

 enum Phase {Init, Regs, Vote, Done}
 Phase public state = Phase.Init;

 address chairperson;
 mapping(address => Voter) voters;

modifier validPhase(Phase reqPhase)
 { require(state == reqPhase);
 _;
 }

register(address voter) public validPhase(Phase.Regs) { }

vote (int prop) public validPhase(Phase.Vote) { }

reqWinner() public validPhase(Phase.Done) { }

constructor (int numProposals) public

Contract name

Data

Modifier–only
one for now

Functions
Use of
modifiers

Figure 3.6 Ballot contract diagram

68 CHAPTER 3 Techniques for trust and integrity

// include listing 3.1 data here

 // modifiers
 modifier validPhase(Phase reqPhase)
 { require(state == reqPhase);
 _;
 }

 constructor (uint numProposals) public {
 chairperson = msg.sender;
 voters[chairperson].weight = 2; // weight 2 for testing purposes
 for (uint prop = 0; prop < numProposals; prop ++)
 proposals.push(Proposal(0));
 state = Phase.Regs; // change Phase to Regs

 }

 function changeState(Phase x) public {
 if (msg.sender != chairperson) {revert();}
 if (x < state) revert();
 state = x;
 }

 function register(address voter) public validPhase(Phase.Regs) {
 if (msg.sender != chairperson || voters[voter].voted) revert();
 voters[voter].weight = 1;
 voters[voter].voted = false;

 }

 function vote(uint toProposal) public validPhase(Phase.Vote) {

 Voter memory sender = voters[msg.sender];
 if (sender.voted || toProposal >= proposals.length) revert();
 sender.voted = true;
 sender.vote = toProposal;
 proposals[toProposal].voteCount += sender.weight;

 }

 function reqWinner() public validPhase(Phase.Done) view returns (uint
 ➥ winningProposal) {

 uint winningVoteCount = 0;
 for (uint prop = 0; prop < proposals.length; prop++)
 if (proposals[prop].voteCount > winningVoteCount) {
 winningVoteCount = proposals[prop].voteCount;
 winningProposal = prop;
 }

 }

Listing 3.5 Solution with modifier validPhase (BallotV3.sol)

Voting state change to be
ordered by the chairperson

validPhase
modifier
used in

function
headers

Explicit validation
using if statement

View function, Tx not recorded on the chain

69Digital democracy problem

STORAGE VS. MEMORY VARIABLES

In the vote function, you’ll find a local variable Voter struct. In Solidity, variables can
be defined as storage (persistent and gets stored in the block) or memory (transient,
does not get stored in the block). By default, simple variables are memory type, tempo-
rary, and do not get recorded in the block. The struct data structure is, by default, a
storage variable, so you need to declare whether it is a memory or storage type when
you use it. In the case of vote function, we’ve defined its local variable Voter struct as
a memory type so that it does not waste storage in the block. When you define a struct
inside a function as a local variable, you’ll have to declare explicitly whether it is a
memory or storage type.

FUNCTION DETAILS
There are five functions, including the constructor:

 constructor()—The constructor function is called when the smart contract is
deployed. The account number that deploys the contract is that of the chairper-
son. The constructor takes the number of proposals to be voted on as a parame-
ter. It initializes the data elements and the state of the voting phase (to Regs
from Init).

 changeState()—This function changes the state of the voting to the correct
phase. It can be executed only by the chairperson, and the parameter value has
to be in the correct order (1, 2, 3). Execute this function from the chairperson
account’s address before transitioning to register(), vote(), and reqWinner()
for the first time. The statement if (x < state) revert(); works only for sim-
ple state advancement. This basic version of state change is improved to a generic
version in chapter 4.

 register()—This function should be executed only by the chairperson
account; otherwise, it will revert and won’t be executed. It will also revert if the
voted Boolean variable is true and if the state is not Phase.Regs.

 vote()—This function can execute only during the voting phase (Phase.Vote).
This rule is enforced by the modifier (rule) validPhase(Phase.Vote). You can
observe the validation of the “one person–one vote” rule and the proposal
number. (When the voting period ends, the state is changed to Phase.Done by
the chairperson.)

 reqWinner()—This function counts the votes and identifies the winning pro-
posal by its number. It executes the counting every time it’s called. During test-
ing, this is okay because you might call the function once or twice, but for
production, you may want to optimize it. (Also, in future designs, you’ll move
this function off-chain or out of the smart contract code.) Note that this func-
tion is a “view” function, so it’s not recorded on the chain.

Review the roles of these functions before you move on to testing the complete Ballot
in the Remix IDE.

70 CHAPTER 3 Techniques for trust and integrity

3.3 Testing
Testing of smart contracts is a crucial step in the Dapp design process. Chapter 10 is
fully dedicated to writing automated test scripts. In this chapter, you’ll start learning
about the basics of testing to lay the foundation for test-driven development.

 Load the code for the ballot problem into the Remix IDE in a file named BallotV3.sol,
and compile it. Click the Deploy & Run Transactions icon, and within the JavaScript VM,
choose an account address in the Account box in the panel at the top left. To the right
of the Deploy button, you’ll see a box for the number of proposals. Enter the number of
proposals (such as 3) in the text box next to it, and click Deploy. This action will invoke
the constructor with number of proposals (in this case 3) as a parameter.

 By now, you should be familiar with the various areas of the Remix IDE. Figure 3.7
shows a screenshot taken during the testing of the Ballot smart contract. During test-
ing, you’ll be working with the user interface provided by Remix at the bottom of the
left panel. You can see the results of execution in the output console at the bottom of
the middle panel, below the code. After you deploy the Ballot smart contract with 3 as
the parameter for the number of proposals, click the State button. It should show 1,
representing Phase.Regs (mapped to 1 in the enum). In this phase, you can start regis-
tering accounts (voters). Note that you won’t use the Init state in this particular solu-
tion, even though it’s defined in the problem.

 To make testing easier, copy the account numbers for the chairperson and the vot-
ers (as shown in table 3.1) from Remix, and save them somewhere convenient (such
as a digital notepad). These accounts are the bottom 5 of the 15 test accounts avail-
able in the Remix IDE. Recall from the problem statement (section 3.2) and use case

Variable state is in
Phase.Done (3)

Chairperson and one
other voter voted for proposal 1;
last voter voted for proposal 2

Winning proposal is 1

Figure 3.7 Remix user interface after the execution of BallotV3.sol

71Testing

diagram (figure 3.3) that the chairperson is also a voter and that the chairperson’s
vote is weighted twice as heavily as that of a regular voter.

NOTE The five accounts in Table 3.1 used to be the only five accounts in the
previous version of Remix IDE (2019). The newer version of Remix IDE
(2020) has ten additional test accounts that are random, which means that
these accounts are different every time you reload. I’ve chosen to use the per-
manent five accounts at the bottom of the Account drop-down list of the
Remix IDE. Be aware of such changes in the future, and be ready to adapt.

A robust testing process includes two different types of testing:

 Positive tests—When given a valid set of data inputs, make sure that the smart
contract performs correctly and as expected

 Negative tests—When given invalid data inputs, make sure that the smart con-
tract catches errors during verification and validation and that functions revert.

3.3.1 Positive tests

Let’s begin testing with the positive tests. In the Remix IDE, follow these steps:

1 Register three more voters (recall that the constructor already registers the
chairperson). Copy and paste the second account number from the Account
drop-down box (0x147 . . .) into the register() function’s parameter box. You
can copy it from your notepad or use the little copy button to the right of where
the account number is displayed in the IDE. Make sure that the chairperson’s
account (0xca3 . . .) is selected in the Account box, and click the register but-
ton in the user interface. (Recall that only the chairperson can register voters.)

2 Repeat step 1 for two more voter accounts.
3 Use the stateChange() function to change the state to 2 or Phase.Vote.

(Make sure that the chairperson’s account is selected in the Account box
before you click the stateChange button.) Click the state button representing
the public variable state. If you see the number 2, you are ready to vote.

Table 3.1 Accounts and their roles

Account addresses Roles

0xca35b7d915458ef540ade6068dfe2f44e8fa733c Chairperson and voter (weight =2)

0x14723a09acff6d2a60dcdf7aa4aff308fddc160c Voter (weight =1)

0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2d Voter (weight =1)

0x583031d1113ad414f02576bd6afabfb302140225 Voter (weight =1)

0xdD870fA1b7C4700F2BD7f44238821C26f7392148 Yet another voter

72 CHAPTER 3 Techniques for trust and integrity

4 With the chairperson’s account selected in the Account box, enter 2 in the
vote() function’s parameter box—that is, the chair is voting for proposal num-
ber 2—and click the vote button.

5 In the Account box, select the second account that was registered in step 1 of
this test sequence. Enter 1 for the proposal number in the vote() function’s
parameter box, and click the vote button.

6 Repeat step 5 for the other two voter account numbers. Now you are set to test
the results.

7 Change the state (from the chairperson’s account) by using the state-
Change() function with parameter 3. state should now be Phase.Done, or 3.
Now you can call the reqWinner() function that does the counting. Click the
reqWinner button, and the winner should show up as proposal number 1.

This step is the end of the positive test. If you like, you can do an exhaustive positive
test for all the accounts in the test chain provided by Remix.

NOTE Working with the user interface may take a little practice. Be patient.
Account numbers may be different when you access the Remix IDE.

3.3.2 Negative tests

Now let’s move on to the negative tests. These tests might be an exhaustive list of tests
covering every possible scenario or a minimal set of tests covering only the most likely
conditions. You can use the following test scenarios and action plans as guidelines to
develop the other tests needed for your applications. Three representative negative
test scenarios and the steps for executing them in the Remix IDE are given here:

 Account other than chairperson registers a voter. This transaction should be
rejected in the register() function’s regular code validation.

From the Account drop-down list in the panel on the left, choose an account
other than the chairperson’s (say, 0x147 . . .). Recall that the first account is the
designated account for the chairperson. Now copy and paste any of the voter
accounts from the first column of table 3.1 into the register() function’s
parameter box, and click the register button. The function call should error
out, as you can see in the console at the bottom of the central panel. Figure 3.8
shows the error and revert messages.

 The smart contract is in the state Phase.Done, and an account tries to vote. The
modifier validPhase should reject this transaction.

Figure 3.8 register() function error
and revert messages in the Remix console

73Using modifiers, require(), and revert()

Make sure that you are in Phase.Done by clicking the State button in the
user interface. It should show 3 for this phase. Choose the chairperson’s
account (0xca3 . . .) from the Account drop-down list in the left panel. Enter a
number (0 to 2) in the vote() function’s parameter box, and click the vote
button. This transaction should error out and be reverted due to the modifier
validPhase in the vote() function validating the correct phase. You should
observe this error in the console.

 An account tries to vote for a proposal number that doesn’t exist. This transac-
tion is rejected by the condition in the vote() function.

This test again concerns the vote() function. Close the current deployment
by clicking the X button in the top-right corner of the user interface. Redeploy
the contract by clicking the Deploy button and entering 3 as a parameter to the
constructor. Register an account as a voter, and change state to 2 or Phase.vote.
Now enter a number (>= 3) in the vote() function’s parameter box, and
click vote. Because the valid proposal numbers are 0, 1, and 2, this should error
out as validated by the condition in the vote() function: toProposal >=

proposals.length.

These examples should give you an idea about testing the smart contract. In this case,
you are testing it manually in the interface provided by the Remix IDE, and you can
review the errors in the console. In chapter 10, after you’ve developed the entire
application stack, you’ll learn to write test scripts, thus automating the manual test
process.

3.4 Using modifiers, require(), and revert()
You’ve learned how to define a rule by using the modifier feature in Solidity. What if
you have more than one rule for executing a function? You can apply a series of rules
(access modifiers) to a function invocation. What if a condition is to be checked
during or after the execution of the statements within a function? In this case, you can
use a require() clause that reverts the function if the condition specified within it
fails. The modifier validPhase specified in the Ballot smart contract uses a require()
clause for checking the condition inside it and, if it fails, reverts the transaction. You
also saw the use of revert() in the vote() function for validation that the voter has
not already voted.

 In the Ballot example, a single modifier was used in the function headers to vali-
date the system parameters. Recall that the validPhase modifier enforces that all
three functions—vote(), register(), and reqWinner()—are in the correct phase
when they are invoked. Let’s now define one more modifier to reinforce your under-
standing of modifiers. You’ll do this for the validation within the register() function
of the same smart contract. The modifier definition and use are shown in the next list-
ing. Recall from the problem statement (section 3.2) that only the chairperson can
register other voters. You can enforce this rule by using the onlyChair modifier.

74 CHAPTER 3 Techniques for trust and integrity

if (msg.sender != chairperson ..)

 modifier onlyChair ()
 { require(msg.sender == chairperson);
 _;
}

function register(address voter) public validPhase(Phase.Regs) onlyChair
{

You apply multiple modifiers to a function by specifying them in a whitespace-separated
list. Modifiers are evaluated in the order in which they’re presented, so if the outcome
of one modifier depends on that of another, make sure that you order the modifiers in
the right sequence. In Ballotv3.sol, which uses the access modifiers validPhase and
onlyChair, the validPhase modifier may take precedence and be applied first. In other
words, if the phase is incorrect, you don’t have to check who is invoking the register()
function. The header of the register() function, therefore, becomes

Function register(address voter) public validPhase(Phase.Regs)
 onlyChair

Here’s another example from an online buying use case:

function buy(..) payable enoughMoney itemAvail returns (..)

A function call to buy() verifies whether enough money is available (with the enough-
Money modifier) before checking the availability of the item. If enough money is not
available, the function reverts without checking the item’s availability through the
itemAvail modifier.

3.5 Assert() declarations
So far, our discussion of modifiers has involved two special built-in functions of Solid-
ity: require() and revert(). In this section, you’ll learn about one more special func-
tion, assert(), which asserts that a condition is met during the computation process
inside a function.

 Suppose that you would like at least three votes (or majority votes) to be cast for
the winning proposal in the ballot problem we’ve been discussing. You can enforce
this rule by using an assert() clause at the end of the reqWinner() function. You can
validate the parameters not only on entry to a smart contract function, but also at var-
ious stages of computation inside a function. Using assert(winningVoteCount>=3)
will cause the function to revert if a vote count of 1 or 2 is the highest or number of
voters is less than 3.

Listing 3.6 Definition and use of onlyChair modifier

Statement to be replaced
by modifier onlyChair

Modifier onlyChair
definition

Use of two modifiers in
register() function’s header

75Assert() declarations

NOTE The value of 3 is used here for quick testing. In a more realistic case,
you could use the value for majority in the assert() function or some other
exceptional condition that should be checked.

Listing 3.7 shows the Ballot smart contract code with these incremental improve-
ments: another modifier, onlyChair, and the assert() function. The combination of
revert(), require(), and assert() along with modifiers and their proper use will
help you address exceptions through verification and validation, resulting in robust
trust intermediation by the smart contracts. require() used instead of an if state-
ment means that a transaction will be reverted if a condition fails. If the function call
reverts, no Tx is recorded on the blockchain for this function call. It is critical to
understand that revert() stops the Tx from happening.

 // modifiers
 modifier validPhase(Phase reqPhase)
 { require(state == reqPhase);
 _;
 }
 modifier onlyChair()
 {require(msg.sender == chairperson);
 _;
 }

 constructor (uint numProposals) public {
 chairperson = msg.sender;
 voters[chairperson].weight = 2; // weight 2 for testing purposes
 for (uint prop = 0; prop < numProposals; prop ++)
 proposals.push(Proposal(0));
 state = Phase.Regs;
 }

 function changeState(Phase x) onlyChair public {

 require (x > state);
 state = x;
 }

 function register(address voter) public validPhase(Phase.Regs)
 onlyChair {

 require (! voters[voter].voted);

 voters[voter].weight = 1;
 // voters[voter].voted = false;
 }

 function vote(uint toProposal) public validPhase(Phase.Vote) {

 Voter memory sender = voters[msg.sender];

Listing 3.7 With all trust rules coded (BallotV4.sol)

Two modifiers,
including onlyChair

Use of onlyChair
modifier

require()
instead of

traditional
if

Use of two modifiers:
validPhase and onlyChair

Use of memory instead of
storage type for local variables

76 CHAPTER 3 Techniques for trust and integrity

 require (!sender.voted);
 require (toProposal < proposals.length);

 sender.voted = true;
 sender.vote = toProposal;
 proposals[toProposal].voteCount += sender.weight;
 }

 function reqWinner() public validPhase(Phase.Done) view
 returns (uint winningProposal)
 {

 uint winningVoteCount = 0;
 for (uint prop = 0; prop < proposals.length; prop++)
 if (proposals[prop].voteCount > winningVoteCount) {
 winningVoteCount = proposals[prop].voteCount;
 winningProposal = prop;
 }
 assert(winningVoteCount>=3);
 }
}

The functions assert() and require() are similar in that both check conditions and
revert the transaction if the check fails. You use require() for common validations
such as checking the limits of a variable’s value (such as age >= 18). You expect
require() to fail sometimes; that is reasonable. assert() is meant for handling
exceptions. You expect that this condition should not normally fail. To check the head
count at a summer camp, for example, you might use assert(headcount == 44). You
don’t want this check to fail in the middle of the night! On a more serious note, an
assert() failure costs a lot more in wasted blockchain gas (execution cost) than
require() reverting, so be selective about what to use when. Use assert() sparingly
for managing exceptions. Use require() for validation of data, computations, and
parameter values.

 At this time, you can load listing 3.7, Ballotv4.sol, into the Remix IDE. Review the
code to see all the incremental improvements (modifiers, require(), revert(), and
assert()), and explore its workings.

3.6 Best practices
Now that you’ve learned about some significant additional features specific to block-
chain application development, it’s an appropriate time to review some best practices:

 Keep your smart contract code simple, coherent, and auditable. Let each state
variable and function specified in a smart contract address a single problem. Do
not include redundant data or unrelated functions. Make the smart contract
functions auditable by using custom function modifiers instead of inline
(if/else) code for checking pre- and post-conditions of a function’s execution.

require() instead
of traditional if

Use of assert()

77Summary

 Use function access modifiers for
– Implementing rules, policies, and regulations for data access for all the par-

ticipants
– Implementing common rules for all who may access a function
– Declaratively validating application-specific conditions
– Providing auditable elements to allow verification of the correctness of a

smart contract
 Use the memory type as a qualifier for local variables that don’t need to be stored

on the blockchain. Memory variables are transient and are not stored. (You saw
an example in listing 3.7.)

 Develop the smart contract in incremental steps, debugging each step.
 Be aware that the Solidity language updates frequently to improve performance

and security. In this case, you have to adjust your code to meet the requirements
of the latest version.

3.7 Retrospective
The design process you’ve learned in this chapter—creating a use case diagram; iden-
tifying users, data assets, and FSM state transitions; creating a contract diagram; and
writing smart contract code—enables you to analyze a problem systematically and
deliver a suitable smart contract solution. The smart contract syntax is similar to that
of class in object-oriented programming, with the additional caveat that especially
careful design is required for the trust and integrity elements.

 You’ve also learned several special techniques for realizing these trust elements,
including implementing trust intermediation through modifiers that enable valida-
tion and verification of conditions in a smart contract. Modifiers can also support pri-
vacy, security, confidentiality, and (thus) integrity by managing access to your data and
functions.

3.8 Summary
 Trust and integrity are critical needs in a decentralized system, in which the par-

ticipants operate beyond traditional boundaries of trust. In a decentralized sys-
tem, no humans are checking your credentials, such as a driver’s license, and
no system is verifying your username/password combination for authentica-
tion.

 Trust in blockchain-based application development is achieved by verification
and validation through a trio of features: modifiers, require(), and assert().

 The revert() declaration reverts a function call and prevents transactions
from being recorded in the blockchain’s immutable ledger, thus preventing
invalid information from accumulating in the ledger.

 FSM design provides another important design diagram, especially for the
design of smart contracts with state transitions.

78 CHAPTER 3 Techniques for trust and integrity

 The Remix web IDE gives you a one-stop web platform for blockchain-based
application development, including account numbers, transactions, and
recording. In chapters 6–11, you’ll use this knowledge to develop Dapps in a
desktop environment.

 Armed with your knowledge of design principles, the design process, and the
techniques for trust, you are ready to solve blockchain problems, represent your
solutions by using a variety of design diagrams, and code smart contracts in the
Solidity language. You’ll learn in chapters 5–7 about further strengthening trust
in decentralized applications through algorithmic approaches using cryptogra-
phy and secure hashing.

79

From smart
 contracts to Dapps

In the preceding chapters, you designed and developed the core component of a
blockchain application: the smart contract. But the logic coded in a smart contract
cannot act alone. You need user-facing applications that will trigger the smart con-
tract functions and blockchain services. These applications invoke smart contract
functions, which in turn verify, validate, and record the resulting transactions and
data on the distributed ledger of the blockchain. In this chapter, you’ll learn about
the structure of this larger system, called a decentralized application (Dapp), and

This chapter covers
 Designing the directory structure and code

elements of a Dapp

 Developing Dapps using the Truffle suite

 Connecting a Dapp front end to a smart contract

 Managing accounts with the MetaMask-enabled
browser

 Deploying and testing an end-to-end Dapp

80 CHAPTER 4 From smart contracts to Dapps

explore the techniques and tools for developing Dapps. Recall the Dapp stack and the
definition of a Dapp from chapter 1, shown in figure 4.1.

DEFINITION Dapps are web or enterprise applications that contain decentral-
ized smart contract logic to invoke blockchain functions.

Figure 4.2 depicts two nodes connected by a blockchain network. If you were to sepa-
rate the second layer of the Dapp stack (figure 4.1) in these two nodes from its sur-
rounding layers (as indicated by the dotted lines in figure 4.2) and take a peek, you’d
see the APIs, ports, server code, and other scripts integrating the layers. These compo-
nents are the ones you will work on while developing a Dapp.

Web or enterprise application

This layer implements blockchain
functionality such as Tx > block
and consensus.

Decentralized applications (Dapps)

 Application logic on virtual machine
sandbox

Blockchain protocol implementation

Network and operating system

Computer systems hardware

These two layers are the
same as your web server’s.

This layer implements the
environment for application
logic execution.Account

AccountParticipant account

Figure 4.1 Dapp stack

Actor

Process

Actor

Process

Decentralized applications interface: web browser

Smart contracts on virtual
machine sandbox

RPC port

API
User interface

Decentralized applications interface: web browser

Smart contracts on virtual
machine sandbox

Smart
contract

Smart
contract

RPC port

API
User interface

Blockchain protocol implementation

Network and operating system

Computer systems hardware

Blockchain network

Blockchain protocol implementation

Network and operating system

Computer systems hardware

PortPort

Account Account

Blockchain

Decentralized
actors/processes

Web server code,
API, scripts

Figure 4.2 Architectural model of a blockchain network

81Dapp development using Truffle

Now let’s follow the flow in the architectural model shown in figure 4.2. Starting at the
top, the users (actors) or processes acting on behalf of users invoke the UI functions.
These functions use web application software and blockchain APIs to connect to
smart contract functions. Txs representing the smart contract function invocations
are recorded on the blockchain. (Note that only some of the necessary Txs will be
recorded.) You can follow the operational flow in a node from an actor to the consis-
tent blockchain recording on both nodes via the blockchain network. This figure also
illustrates how a blockchain-based Dapp is not a standalone application but is depen-
dent on its host operating system’s file system, ports, and network capabilities.

NOTE The architecture in figure 4.2 shows just two nodes. In practice, many
such nodes with the same blockchain configuration—the same network ID
number and the same genesis block, for example—are connected to make up
the blockchain network of a decentralized system.

In this chapter, you’ll learn to develop and program the top two layers of the Dapp
stack of a blockchain network. But before you start, be warned that blockchain pro-
gramming is complex and that the Dapp stack is different from a traditional web
stack. Following are some of the artifacts and techniques that you’ll use for Dapp
development:

 For every Dapp project, a <project>-app module for the web application and a
<project>-contract module for smart contracts

 A web server and a package manager (Node.js and the Node Package Manager
[npm])

 A blockchain provider (such as Ganache) called web3 provider
 A development tool, the Truffle suite (IDE) that provides an integrated envi-

ronment to deploy and test a Dapp
 Account management using the MetaMask browser plugin

The end-to-end development process introduced in this chapter will be expanded in
future chapters with various other Dapps.

4.1 Dapp development using Truffle
Truffle is an integrated development environment and testing framework that pro-
vides a suite of features and commands for end-to-end Ethereum-based Dapp develop-
ment, including commands for

 Initializing a template or base directory structure for a Dapp (truffle init)
 Compiling and deploying smart contracts (truffle compile)
 Launching a personal blockchain for testing with a console (truffle develop)
 Running migration scripts for deploying smart contracts (truffle migrate)
 Opening a command-line interface to Truffle for testing without the Dapp UI

(truffle console)
 Testing the deployed contract (truffle test) (discussed in chapter 10)

82 CHAPTER 4 From smart contracts to Dapps

These are just a few of the core operations possible with Truffle, but they’re sufficient
to develop and deploy a Dapp.

 You’ve already used an IDE, Remix, so you may be wondering why I’m introducing
another one now. The Remix IDE is a learning environment for smart contract devel-
opment. Truffle takes the Dapp development to the production level. It uses npm
modules for project development, dependency management, and systematic migra-
tions. The Truffle suite (IDE) supports scriptable deployment; it provides a migration
framework for staging smart contracts and package management capabilities for por-
tability and integration. Use of Truffle in this chapter requires familiarity with the
command-line interface and working knowledge of an editor such as gedit or Atom.

4.1.1 The development process
Here are the major steps in the development process:

1 Analyze the problem statement; design and represent the solution guided by
design principles and UML diagrams.

2 Develop and test the smart contract, using the Remix web IDE.
3 Code the end-to-end Dapp, test and deploy it on test blockchains, and migrate

it to main networks using the Truffle IDE.

Ready to launch a Dapp development project?

4.1.2 Installing Truffle
You’ll be developing an end-to-end Dapp with a web client for the user interface. The
prerequisites for this project are

 Operating system—Linux Ubuntu 18.04, macOS (Sierra or later), or Windows 10
(or later)

 Web server for the web client interface—Node.js v12.16.0 or later
 Package manager—npm 6.13 or later
 IDE—Truffle 0.5.X or later
 Smart contract language toolchain—Solidity 0.5.16 or later (comes with the Truffle

suite)
 Browser/web client—Chrome and the MetaMask (LTS) plugin
 Editor—Atom, gedit, VSCode or any other editor of your choice

In this list, Node.js serves as your web server for the Dapp front end, and MetaMask
will hook into a specified blockchain to manage the accounts, acting as a pipe
between the application front end and the blockchain node that hosts the accounts,
as shown in figure 4.2.

NOTE All the commands shown here are to be typed or copied and pasted to
the command line of a terminal window. Pressing Enter after entry will execute
the command. Also, note that the version numbers may be different when
you’re running npm install. That’s all right; npm pulls the right versions for
the required modules.

83Dapp development using Truffle

Follow these steps to install the required software packages:

1 Install the operating system:
For Linux, download and install Ubuntu Linux LTS. You can also use CentOS,

Arch Linux, OpenSUSE, or other distributions. The long-term support (LTS) ver-
sion is recommended instead of the new releases for security and stability.

For macOS, download and install Homebrew (https://brew.sh).

For Windows, make sure that you have a 64-bit machine with the Windows 10
operating system.

2 Install the browser.
Download Chrome from https://www.google.com/chrome, and follow setup

to complete the installation process. Google Chrome should start automatically
when installation is complete.

3 Download and install Node.js and npm LTS from https://nodejs.org/en.
You can also install these packages from the repositories by running the fol-

lowing commands in a terminal window:

– Linux—sudo apt-get install nodejs npm

– macOS—brew install node

For Windows, download the 64-bit version installer, execute the .exe file, and
accept all default options when installing

4 Check the installation and versions (node v12.16.0 and npm 6.13.4 and later)
by running the following commands in a terminal window:

node –v

npm –v

5 Install the Truffle suite (IDE) from its GitHub repository at https://github.com/
trufflesuite/truffle or via npm as follows, and verify that its version is 5.1.X or
later:

npm install -g truffle

If errors result due to any version incompatibilities, try the LTS version of node:

npm uninstall -g truffle

npm install –g truffle@nodeLTS

The following command returns the versions of the software installed:

truffle version

The command produces output like the following (your version values may be
higher):

Truffle v5.1.14 (core: 5.1.13)

Solidity v0.5.16 (solc-js)

Node v12.16.2

 Web3.js v1.2.1

https://brew.sh
https://www.google.com/chrome
https://nodejs.org/en
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle

84 CHAPTER 4 From smart contracts to Dapps

At the point, you have completed the installation of the trio of development tools—
Node.js, npm, and Truffle IDE—that you’ll use for Dapp development in this book.
Note that Truffle automatically installs the Solidity compiler.

NOTE These setup instructions are one-time only; this setup will be used for
the Dapp development in chapters 5–11 and for any Dapps you may want to
develop for your own projects. Go through each step carefully and completely
before you start the next step. Understand that version numbers for the soft-
ware may be higher and different from what are shown here. Seek the help of
your IT administrator if you do not have admin privileges for software installa-
tion on your laptop or if you are working on enterprisewide installations.

4.1.3 Building the Dapp stack

The next steps focus on the upper levels of the Dapp stack (figure 4.3), and corre-
spond to the following list of tasks (recall that this stack was introduced at a high level
in chapter 1):

1 Install a local blockchain layer (section 4.2).
2 Develop a smart contract layer and deploy (section 4.3).
3 Develop the web application UI layer (section 4.4).
4 Configure the web server and develop glue code connecting the UI to the smart

contract layer (section 4.4).

For a systematic organization of the many files and scripts of a Dapp, it’s good to fol-
low a standard directory structure. For the counter problem in chapter 2, for exam-
ple, you’d store smart contract-related files in the counter-contract directory and the
web application-related files in the counter-app directory, as shown here with the root
directory of Counter-Dapp:

Decentralized applications interface: web browser

Smart contracts on virtual
machine sandbox

Smart
contract

RPC port

API
User interface

Blockchain protocol implementationAccount

b. Smart contract programming

c. Web application programming

Blockchain

d. Server configuration;
Dapp UI to smart contract
glue code

a. Blockchain client/test chain:
you'll use Ganache.

Figure 4.3 Dapp development layers

85Install Ganache test chain

.
 Counter-Dapp

 counter-app
 counter-contract

4.2 Install Ganache test chain
For the blockchain layer, several options are available, from the simulated VM that you
used in the Remix IDE to a full-blown Geth (Go Ethereum) client. In this chapter, you’ll
use a blockchain client (test chain) called Ganache that is part of the Truffle IDE suite.

 Download Ganache from https://www.trufflesuite.com/ganache, and install it by
clicking the downloaded file and clicking the Quickstart button. It is useful to pin the
Ganache to the taskbar for quick access.

 Ganache is also an Ethereum client, and by default, it is configured to run on the
localhost. It’s ideal for testing your Dapp prototypes; it provides ten accounts, each
with 100 mock ether for paying for the gas points for execution as well as for transfer-
ring among accounts. Its blockchain interface is shown in figure 4.4. Toward the top,
you’ll see a set of seed words or mnemonics; copy and save them somewhere, because
you’ll need them to authenticate access to the chain during testing of the Dapp.

Twelve-word
seed phrase to
restore accounts

Port number

Blockchain
network ID

Figure 4.4 Ganache test chain interface

https://www.trufflesuite.com/ganache

86 CHAPTER 4 From smart contracts to Dapps

4.3 Develop the smart contract
To get you started quickly with the Dapp design process, we’ll reuse the balloting
problem introduced in chapter 3. The problem statement is repeated here for your
convenience.

PROBLEM STATEMENT Consider an online ballot application. People vote to
choose a proposal from a set of proposals. A chairperson registers the people
who can vote, and only registered voters can vote (only once) on a proposal
of their choice. The chairperson’s vote is weighted twice (x2) as heavily as reg-
ular people’s votes. The ballot process goes through four states (Init, Regs,
Vote, Done), and the respective operations (initialize, register, vote, count
votes) can be performed only in the corresponding states.

Voting phase transitions are usually dealt with outside the balloting process, so in this
case, you can drop the code related to the states {Init, Regs, Vote, Done} from the
smart contract of chapter 3. We’ll assume that an authority (such as an election com-
mission) outside the chain manages the voting stages.

 The version of the Ballot smart contract in listing 4.1 omits the states and includes
only skeleton functions for brevity. Recall that you developed this solution in Solidity,
using the design principles outlined in chapter 3. One more modifier validates that
the voter is registered before they vote. Now is a good time to download all the files
for the Ballot-Dapp and review them. You can find the complete listing of Ballot.sol in
this codebase for this chapter. You’ll use that listing as the smart contract for develop-
ing the Dapp.

NOTE The pragma command shows a range of 0.4.22 to 0.6.0 to enable the
Solidity features of these versions. For example, the features of 0.7.0 or 0.4.0
will not be enabled for the compilation of listing 4.1 and may throw an error
if they are present.

pragma solidity >=0.4.22 <=0.6.0;
contract Ballot {

 struct Voter {

 }
 struct Proposal {

 }
 address chairperson;
 mapping(address => Voter) voters;
 Proposal[] proposals;

 modifier onlyChair()
 {require(msg.sender == chairperson);
 _;

Listing 4.1 Smart contract for the ballot use case (Ballot.sol)

Use of address data type
and mapping structure

Modifier definitions

87Develop the smart contract

 }
 modifier validVoter()
 {
 require(voters[msg.sender].weight > 0, "Not a Registered Voter");
 _;
 }

 constructor(uint numProposals) public { }

 function register(address voter) public onlyChair { }

 function vote(uint toProposal) public validVoter {}

 function reqWinner() public view returns (uint winningProposal) {}
}

Our Ballot-Dapp will follow the directory structure discussed earlier, as shown here:

.
 Ballot-Dapp

 ballot-app
 ballot-contract

NOTE ballot-contract will be the root or base directory for all the smart
contract-related artifacts, and ballot-app will be the root directory for all the
web UI-related artifacts.

Run the following commands in a terminal to create this directory structure:

mkdir Ballot-Dapp
cd Ballot-Dapp
mkdir ballot-app
mkdir ballot-contract

The next sections focus on Truffle-based development of the ballot-contract module.

NOTE The steps in section 4.3.1 describe a detailed command-by-command
assembly of a Dapp project. This chapter’s codebase contains the pieces of
code required for this process. A completed project with all the components
and instructions on how to run it is also available.

4.3.1 Create a project folder

The first step is creating and initializing a standard directory structure to house your
contracts. Truffle provides a template directory with the required structure. From the
ballot-contract directory, run the following commands to initialize a basic project
structure:

cd ballot-contract
truffle init
ls

Modifier definitions

Smart contract
function headers

with modifiers

88 CHAPTER 4 From smart contracts to Dapps

The ls command lists the contents of the directory. You can use the dir command if
you are working in the Windows OS. The output items should look like this:

contracts migrations test truffle-config.js

These items are the Ballot smart contract artifacts. Files and folders are as follows:

 contracts/—Solidity source files for your smart contracts. An important contract
called Migrations.sol is here; this smart contract has the script for facilitating
the deployment of other smart contracts of a project.

 migrations/—Truffle uses a migration system to handle smart contract deploy-
ments. Migration is an additional script (in JavaScript) that keeps track of
changes in the contracts under development.

 test/—JavaScript and Solidity tests for your smart contracts.
 truffle-config.js—Truffle configuration file, containing, for example, configura-

tion for the blockchain network ID, IP, and RPC port number.

The directory structure initialized by the truffle init command is shown in figure
4.5. You’ve got to be in the correct directory when executing Truffle commands; oth-
erwise, the commands will result in an error. You’ll use this directory structure as a
guideline for Truffle-based development.

In the following sections, when you enter Truffle commands from a (Linux, Mac, or
Windows) command line, you’ll prefix them with truffle: truffle compile, truf-
fle migrate, and truffle console. This prefix enables the use of the default tools
and techniques specified by the Truffle suite.

ballot-contract

contracts

migrations

test

truffle-config.js

Solidity contracts
for the project

Scripts for deploying
smart contracts

Test scripts for testing
smart contracts

Configuration
file

Figure 4.5 ballot-contract
directory structure

89Develop the smart contract

4.3.2 Add smart contract and compile

Now it’s time to add the smart contract. The Solidity contract in this case is Ballot.sol
from listing 4.1. Run the following commands to navigate to the contracts directory:

cd ballot-contract
cd contracts

Copy the Ballot.sol file into this directory. Then navigate back to the ballot-contract
directory, check that you’re in the right directory, ballot-contract, and run the com-
pile command:

cd ..
truffle compile

You must run this command from the ballot-contract directory. If there are no errors,
you should see outputs for the generation of compile artifacts for the contracts. The
compiled code is saved in a newly created build/contracts directory. You see these
messages upon successful compilation:

Compiling ./contracts/Ballot.sol...
Compiling ./contracts/Migrations.sol...
Artifacts written to ./build/contracts
Compiled successfully using: -- solc: 0.5.16+commit.id4f565a...

The build/contracts directory contains JSON files for the contracts that are used for
(JSON-RPC) communication between the web client and blockchain server. Navigate
to build/contracts after a successful compilation, and make sure that you see the
Ballot.json file.

DEFINITION The JSON file of the smart contract is called the application binary
interface (ABI) of the smart contract code. This file is the interface that will be
used by calls from the web application to smart contracts and also for data
transfer between these modules.

During compilation, if there were any syntax errors in your code, you have two
options for fixing them. (If you didn’t get any errors but would like to try these
options, open Ballot.sol in an editor, remove a semicolon [;] somewhere, and repeat
the compile process; you’ll see that truffle compile outputs the error.)

 The first option is to open Ballot.sol in an editor such as Atom or gedit, debug the
code, save it, and recompile using truffle compile. The second option is to use the
Remix IDE introduced in earlier chapters. Recall that Remix has a just-in-time com-
piler. That compiler can catch syntax errors as you type in the smart contract code, as
well as highlight errors in the code that you paste into it. Then you can transfer the
smart contract code into the truffle contracts directory.

90 CHAPTER 4 From smart contracts to Dapps

4.3.3 Configure blockchain network

Now edit the truffle-config.js file in the ballot-contract directory so that it matches list-
ing 4.2. This file is the configuration file for the test blockchain you’ll deploy next,
and it’s where you set the RPC port for connecting the web application to the smart
contracts. In this case, you are using a test blockchain on the localhost, bound to the
port 7545, and the blockchain network ID is 5777. (You learned in chapter 1 that the
network ID of the Ethereum main network is 1.) Localhost and port number 5777
(http://127.0.0.1:7545) is the standard configuration for Ganache. You can also copy
the prefilled file from the chapter’s code.

module.exports = {
 // See <http://truffleframework.com/docs/advanced/configuration>
 // to customize your Truffle configuration for the RPC port
 networks: {
development: {
 host: "localhost",
 port: 7545,
 network_id: "5777"
}
 }
};

In your development, you are using your local machine as the server, as indicated by
localhost, and the RPC port is 7545 for binding the local development test chain.
You can identify the port number and network ID in the Ganache interface, below the
top line of icons (see figure 4.4). You’ll configure a different ID and port number
when deploying contracts on other blockchain networks.

4.3.4 Deploy the smart contract

The last step before you deploy is adding a file to the migrations directory to deploy
your smart contract. In this case, the smart contract is called Ballot, and to deploy it,
you’ll add a migration script named 2_deploy_contracts.js to the migrations directory.
The file’s contents are shown in the next listing. The name of the artifact should be
the same as the smart contract name at the top—in this case, Ballot.

var Ballot = artifacts.require("Ballot");

module.exports = function(deployer) {
 deployer.deploy(Ballot,4);
};

Listing 4.2 Configuring the test chain (truffle-config.js)

Listing 4.3 Deploy script for Ballot smart contract (2_deploy_contracts.js)

The server is your
local machine.

This is the RPC port for the
Ganache blockchain client.

Specify the contract to be deployed.

Ballot constructor is sent a parameter (4)
for number of proposals

91Develop and configure the web application

The 2_deploy_contract.js file specifies the contracts to deploy and also the parameters
to the constructor, if any. In this case, the parameter to the Ballot’s constructor is ini-
tialized to 4, meaning that there are four proposals to vote on. You can deploy any
number of contracts with this script; at this time, you only have the Ballot contract, but
you can configure 2_deploy_contracts.js to deploy other smart contracts as you
develop them. You’ll see one additional file, 1_initial_migration.js, in the migrations
directory; this is the script for deploying the initial migration, Migrations.sol, which is
required by truffle migrate. The prefixes 1 and 2 in the names stand for the migra-
tion steps, 1 and 2. Do not change the filenames.

 Navigate to the root of the ballot-contract directory (ballot-contract). Make sure
that the Ganache chain is launched and ready (section 4.2). Type the following com-
mand to deploy your Ballot contract on the Ganache test chain:

truffle migrate –-reset

The reset option will redeploy all contracts, including Migrations.sol. Without the
reset option, Truffle will not redeploy an already-deployed smart contract. You
should use this option only during the development phase when you are debugging
and testing your smart contract because, during the production phase, a contract
deployed is immutable and cannot be overwritten by a reset. The output will show you
whether the deployments were successful and ends with a summary:

Summary
=======
> Total deployments: 2
> Final cost: 0.016526 ETH
..

Notice that it cost you some (test ether) ETH to deploy the smart contract. You can also
observe this cost in ETH taken from the first account on the Ganache UI. The smart
contract has been deployed and ready to be invoked. Next, let’s build a web applica-
tion to access the deployed smart contract.

4.4 Develop and configure the web application
Blockchain infrastructure hosts the smart contract and the Ethereum VM (figure 4.3)
on which the smart contract code is run. A web application provides a convenient
means for a user to interact with the smart contract. To build the web client front end,
you’ll need

 HTML, JavaScript, and CSS for rendering the server contents for user interaction
 A server to host the base entry script defined in index.js
 Server code (app.js) linking the web server and web client
 Additional wrappers and plugins for any frameworks such as Bootstrap and the

web3 API
 A package configuration file, package.json

92 CHAPTER 4 From smart contracts to Dapps

These items are organized in a standard project directory structure, as shown in figure
4.6. On the left is the ballot-contract directory, and on the right, you see the contents
of ballot-app. ballot-contract was covered in chapter 3 and also in section 4.3.

 Now let’s get started on the web app (ballot-app) branch of the Dapp project. Your
objective in this section is to understand the various components of the web applica-
tion for the Ballot-Dapp. With this objective in mind, I’ve provided the complete code
elements needed for the ballot-app to explore.

4.4.1 Develop ballot-app

This structure is the standard directory format you’ll use for Dapp development. To
begin, navigate to the ballot-app directory, and initialize and configure the Node.js
server.

NOTE npm is a convenient tool for managing JavaScript modules. It is the
default package manager for Node.js modules.

Run the following commands from the base directory (Ballot-Dapp) of the ballot proj-
ect to deploy the Ballot-Dapp on your Node.js server:

cd ballot-app
npm init

You’ll be given a series of options about the server you are creating, including the
main script file (index.js). Accept all the default values by pressing Enter. This process
creates a file called package.json, listing the dependencies of the ballot-app server.
You’ll need to modify this file to add two items:

 The script for starting the Node.js server (index.js)
 A dependency on the express module for defining the web application

ballot-contract

contracts

migrations

test

truffle-config.js

ballot-app

index.js

src

package.json

web files (see figure 4.7)

Start script for
server

Server
dependencies

Solidity contracts
for the project

Scripts for deploying
smart contracts

Test scripts for testing
smart contracts

Configuration
file

Figure 4.6 ballot-contract and ballot-app directory structure

93Develop and configure the web application

Modify your package.json file so that it looks like the following listing. You can also
copy the prefilled package.json provided in the codebase of this chapter.

{
 "name": "ballot-app",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "node index.js"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.17.1"
 }
}

Express is one of the many web application frameworks for the Node.js server; you’ll
use the express module to specify the script for the entry point of the server. (I’ll
refer to the web server as the Node.js server instead of the Node server to distinguish
it from the blockchain node.)

 Let’s examine the index.js file (listing 4.5) that defines the web application. It
defines the request and response functions and the port number for the Node.js
server. For subsequent deployments, you can use npm install (instead of npm init)
to deploy all the required Node.js modules. You can use this file as a default index.js
for your Dapps. Now you can create an index.js with the contents shown in listing 4.5,
or use the one I’ve provided.

var express = require('express');
var app = express();
app.use(express.static('src'));
app.use(express.static('../ballot-contract/build/contracts'));
app.get('/', function (req, res) {
 res.render('index.html');
});
app.listen(3000, function () {
 console.log('Example app listening on port 3000!');
});

Listing 4.4 package.json

Listing 4.5 Initializing express-based web application (index.js)

Start script for Node.js server

Dependency on express module

src is the directory for
public web artifacts.

Location
of smart
contract’s
interface
JSON file

index.html is the landing
page for the web app.

3000 is the Node.js server port.

94 CHAPTER 4 From smart contracts to Dapps

The only other directory in ballot-
app is the src directory (figure 4.7),
which contains

 The usual artifacts for a web
page (CSS, fonts, images,
JavaScript).

 The landing page for the web
application (index.html).

 proposals.json, which holds
details about the proposals
being voted on. (Images for
the proposals are in the images
subdirectory.)

 app.js, the glue code connect-
ing the web server layer and
the smart contract layer.

You can review the files for the web
app by unzipping src.zip in the
codebase for this chapter and cloning
it into the ballot-app folder, which
contains

index.js package.json src

The src directory contains the source
for the web application part. Com-
munication from the web client to
the blockchain server is through
JSON over RPC. Let’s focus on ana-
lyzing app.js, which contains the han-
dlers for the stimuli invoking the
smart contract functions. I’ll discuss this app.js code later for two reasons: this part will
be different for different smart contracts and Dapp, and you’ll have a better idea of
the role of app.js after you run the Dapp and interact with it.

4.4.2 Launch the ballot-app

At this point, you have assembled all the components for the Ballot-Dapp. Navigate to
the ballot-app directory, and type the following commands to start the Node.js server:

npm install
npm start

app.js

Other Js libraries

images

css

fonts

proposals.json

index.html

js

dist

src

Glue code
between web UI
and smart contract

Landing page
for web app

Images of
proposals to
vote on

Figure 4.7 Web files and folders in the src directory

95Develop and configure the web application

The first command installs all the required modules, and the second command starts
the server on your localhost, launches the app.js, and starts listening for inputs from
the port (3000) specified in the index.js file.

NOTE As an alternative to the steps discussed above, you may use the ready-
made modules for ballot-contract and ballot-app in this chapter’s code (Ballot-
Dapp), following the instructions given.

4.4.3 Install MetaMask wallet

You have one more step—installing MetaMask—to complete before you begin testing
the Dapp. The account addresses are needed to identify the decentralized partici-
pants. Also, transactions have to be digitally signed and confirmed by the participant
(sender of Txs). The balance of the account has to be verified to ensure that it has suf-
ficient ether (gas points) to pay for the cost of execution of functions.

 You need a mechanism for accomplishing all these important operations. For this
purpose, you’ll use a convenient browser plugin called MetaMask (https://metamask
.io) that connects web clients to the web server and blockchain provider through the
RPC port, as shown in figure 4.8. MetaMask is described as a crypto wallet and a gate-
way to blockchain applications; it is an intelligent digital wallet, and it acts as a proxy
between the web client and the blockchain server. MetaMask securely manages the

Blockchain network

Actor

Process

Actor

Process

Decentralized applications interface: web browser

Smart contracts on virtual machine

sandbox
Blockchain protocol implementation

Network and operating system

Computer systems hardware

Account

Port

RPC port

Web3 API calls

MetaMask wallet manger
web3 API provider

Decentralized applications interface: web browser

Smart contracts on virtual machine

sandbox
Blockchain protocol implementation

Network and operating system

Computer systems hardware

Account

Smart
contract

Smart
contract

Port

RPC port

Web3 API calls

User
interface

User
interface Meta

Mask
Meta
Mask

Decentralized
actors/processes

Figure 4.8 Dapp Tx flow from a user via web API, RPC port, smart contract and blockchain

https://metamask.io
https://metamask.io
https://metamask.io

96 CHAPTER 4 From smart contracts to Dapps

accounts created on the blockchain and their balances in ether, and digitally signs the
transactions issued by the participant accounts.

 Add the MetaMask plugin to your Chrome browser by clicking MetaMask, select
Chrome, and install MetaMask for Chrome.

 Figure 4.8 traces the path from the decentralized user or a process to the block-
chain network. The figure shows two nodes, each with its users interacting with the
web client and to the blockchain node through smart contracts and contributing to
the construction of the distributed ledger of the blockchain. The exact copy of the dis-
tributed ledger is in both nodes; can you spot it? (It is the one with three blocks in the
network and operating system layer of both nodes.)

 MetaMask uses Ethereum’s web3 API to access the smart contract. Make sure that
you’ve added the MetaMask plugin to your Chrome browser, as directed earlier. Now
connect it to the Ganache blockchain by doing the following:

 If this is your first time using MetaMask, click the MetaMask icon (a fox) on your
browser, which opens a screen with Get Started button. Click it. Then, on the
screen that appears, click Import Wallet. On the next screen, click I Agree.
After that, change the network by clicking the fox icon again and choosing Cus-
tom RPC from the drop-down list. Type a network name: Ganache or
http://localhost:7545, network ID of 5777, and save.

 For subsequent access to MetaMask, click the MetaMask plugin on your browser
and connect to the custom RPC at http://127.0.0.1:7545 or Ganache. (In some
cases, MetaMask may link to your Ganache automatically.)

Copy and paste the seed words or mnemonic at the top of your Ganache
installation (figure 4.4) in the response screen, as shown on the left side of fig-
ure 4.9.

Choose a password and type it; later, you’ll be able to use this password to
unlock MetaMask without entering the seed words. (Use a password that’s easy
to remember during the testing phase.)

You’ll see accounts on Ganache linked to MetaMask. In some older versions
of MetaMask, only the first account (deployer) shows up. You’ll have to click
Create Accounts on the first account icon (little colored ball) to link more
accounts.

97Develop and configure the web application

4.4.4 Interact with Ballot-Dapp

Now that you’ve deployed the Dapp, you are ready to interact with it. Start a web
browser, and enter localhost:3000 as the URL. You’ll see that the proposals are for
choosing one of four dogs (images). Locate and click the MetaMask symbol in the
top-right corner of the browser window. A small window opens. The points of interest
in figure 4.10 are indicated by 4A–4F. Make sure that you can locate these points on
the web page and in the MetaMask window:

 4A is the opening screen.
 4B, 4C, and 4D are the Register, Vote, and Declare Winner buttons for contract

functions.
 4E is the MetaMask plugin’s drop-down screen.
 4F is the account icon on MetaMask.

Ganache seed words

 Blockchain networks

Password for unlocking
MetaMask

Figure 4.9 MetaMask configuration process

98 CHAPTER 4 From smart contracts to Dapps

The next step is connecting to the Ganache by using MetaMask, as instructed earlier.
Then you’ll be ready to interact with the application. Let’s run some interactions that
you can perform with the Dapp interface:

1 Register two accounts. Click the MetaMask icon, and click Account 1 in the list
that opens. (Only the chairperson can register accounts.) Then, on the web
page, choose the first address from the drop-down list (4B in figurr 4.11), and
click Register. You’ll see a response from MetaMask requesting that you confirm
your choice, as shown on the right side of figure 4.11. Click Confirm.

Choose the second address from the drop-down list on the web page, and
click Register. Click Confirm when MetaMask requests a confirmation.

2 From Account 1, vote for the dog Milli by clicking the Vote button below her
picture; then click Confirm. The right panel of figure 4.11 of MetaMask notifi-
cation for the vote() function shows two addresses: the voter address and the
smart contract address.

3 In MetaMask, navigate to Account 2 (shown on the left side of figure 4.11), and
vote for any other dog other than Milli.

4 From any of the accounts, click the Declare Winner button on the web page.
You should get a notification that Milli is the winner. (Recall that the chairper-
son’s vote counts as two votes.)

You have completed the end-to-end exploration of the Ballot-Dapp. Don’t hesitate to
try other combinations of operations, including some incorrect ones, to see what hap-
pens. If an account that has not registered casts a vote, for example, that vote will be
reverted. You can also involve more accounts just the two used in this example. This
exploration is a demonstration of what you can expect when working with a Dapp.

4E. MetaMask 4F. Account icon
4A. Opening screen

4B. Register button and addresses 4D. Declare Winner button

4C. Vote button

Figure 4.10 Web client of Ballot-Dapp with MetaMask plugin

99Develop and configure the web application

4.4.5 Connect web client to smart contract

One more piece of code is important for Dapp development: the piece that connects
the web app to the smart contract. Recall from our discussion of the directory struc-
ture in section 4.4.1 that app.js is the glue that connects the web client to the smart
contract through a set of handler functions. This code provisions the web3 and smart
contract services for the web front end to call and invoke. The next listing shows the
headers of the function scripts of app.js.

App = {
 url: 'http://127.0.0.1:7545',

 init: function() {
 return App.initWeb3();
 },

 initWeb3: function() {

 App.web3Provider = web3.currentProvider;

 return App.initContract();
 },

Listing 4.6 Glue code between UI and smart contract via web3 API (app.js)

Confirm Tx

Accounts

Example: Account 1 voted for Milli.

Smart contract
account number

Figure 4.11 Network, accounts, and notifications from MetaMask

Web3 provider URL: IP
address and RPC port

Initialize app with
web3 object

Configure web3 provider
and the smart contract

100 CHAPTER 4 From smart contracts to Dapps

 initContract: function() {

 App.contracts.vote.setProvider(App.web3Provider);
 getJSON('Ballot.json', function(data) {

 return App.bindEvents();

 },

 bindEvents: function() {
 $(document).on('click', '.btn-vote', App.handleVote);
 $(document).on('click', '#win-count', App.handleWinner);
 $(document).on('click', '#register', ... App.handleRegister(ad);
 ...
 },

 populateAddress : function(){ },

 getChairperson : function(){ },

 handleRegister: function(addr){ },

 handleVote: function(event){ },

 handleWinner : function(){ };

The code in app.js initializes the web3 object of the Dapp with the port number, web3
provider, and smart contract JSON code (of Ballot.sol). It also binds the button clicks
on the UI to the handlers for the functions register(), vote(), and reqWinner().
There are two support functions: getChairperson() and populateAddress(). The
chairperson’s address is needed because only the chairperson can register accounts.
populateAddress() is a utility function that populates the drop-down list with
account addresses for user convenience when registering accounts.

 With this added knowledge, you can go back to the interface and explore the UI
operations further as an informed user. Also, navigate to other directories and review
the code. Note that the contents of app.js are application-specific and smart contract–
dependent. You’ll have to develop different codes for other Dapps and smart con-
tracts. You’ll get a chance to explore the app.js code for other Dapps in chapters 6–11.

4.5 Retrospective
The design and development process of a Dapp has three major components: smart
contract design, front-end design, and development of the server-side glue code
(app.js). For a blockchain developer, the focus is on the smart contract and the glue
code in app.js to deploy the Dapp in a decentralized environment. As a blockchain
developer, you’ll typically work with a team of front-end and server-side developers to
complete the design.

Initialize contract object

Bind UI buttons to handlers
for smart contract functions

Functions for drop-down list of
addresses and chairperson info

Handler code connecting
front-end buttons to
contract functions

101Best practices

 Smart contract development differs significantly from class design. A function
invocation comes with the sender’s identity and value (cost) for the execution of the
statements within it. The sender’s account has an address and a balance (of ether in
Ethereum, for example). A Dapp developer must be aware of these attributes of a
blockchain account when developing applications for the blockchain.

 You can imagine blockchain as a ring road connecting all the peer participants and
other autonomous entities of the world. This road is intended for the transportation
not of people, but of useful transactions. Automatic rules verify, validate, and establish
trust in the transactions and between peers, enabling them to transact with anyone con-
nected by the ring road. Dapps provide the on ramps and exit ramps to allow anyone
to transact with potentially everyone else, creating innovative opportunities.

4.6 Best practices
Here are some best practices specifically focusing on Dapp development:

 Use a standard directory structure. The Dapp ecosystem has many components,
with the smart contract as the core. The use of a standard directory structure is
important for organizing the components and automating the build process.

 Use a standard naming convention. Build tools such as Truffle create standard direc-
tories and use standard filenames, such as truffle-config.js and 2_deploy_script.js.
Maintain these standard names to support dependencies and automatic build
scripts. Build scripts like truffle compile and truffle migrate require specific
filenames and execute actions based on the contents of certain configuration
files, such as truffle.js. Don’t rename 2_deploy_script.js as deployScript.js, for
example; the 2_ prefix is required to preserve execution order. Accordingly,
1_initial_migrations.js executes before 2_deploy_script.js, and so on.

 Be aware that Ganache provides a test chain, unlike the simulated environment provided
by the Remix JavaScript VM. The VM provides a controlled environment for
debugging and testing during Dapp development. Later, you’ll connect to real
public blockchains, such as Ropsten and Rinkeby, and (if you own real ether)
even to the Ethereum mainnet.

 Be aware of the reset option in the migration of smart contracts. During testing and
development, the truffle migrate --reset command can be used to over-
write the deployed smart contracts on the blockchain server. In a real block-
chain, when a smart contract is deployed on the server, the smart contract’s
code is recorded in the immutable of every stakeholder and is theoretically
impossible to overwrite, according to the current Ethereum protocol. A general
recommendation is to test the smart contract well in the development environ-
ment before moving to the production environment.

102 CHAPTER 4 From smart contracts to Dapps

4.7 Summary
 Truffle provides a suite of intuitive development tools and techniques (truffle

init, compile, develop, migrate, debug, and test).
 The Truffle suite provides a convenient npm-based development environment

for Dapps.
 The MetaMask browser plugin connects the web interface to smart contracts. It

manages the accounts and allows you to confirm transactions.
 Ganache is a web3 provider with a simulated account addresses that is conve-

nient for testing purposes.
 A blockchain Dapp identifies participants as well as smart contracts using

account addresses.
 From the Dapp discussion in this chapter, it is apparent that a typical Dapp

development team will have to include blockchain-based system developers as
well as front-end and server-side developers, each with expertise in respective
technologies and tools.

Part 2

Techniques for end-to-end
 Dapp development

A smart contract cannot act alone; it is a part of a larger application. A
decentralized application, or Dapp, exposes the smart contract logic to enable
users to transact and record on the blockchain. Part 2 introduces the design and
development of Dapps, additional design considerations such as on-chain and
off-chain data, and side-channel operations. You’ll also learn about adding secu-
rity and privacy to your applications by using cryptography and hashing func-
tions. Two applications—a blind auction and a micropayment channel—are
introduced to illustrate concepts for accessing blockchain services using the
web3 API. You’ll also develop the airline consortium smart contract introduced
in part 1 into a full-fledged Dapp by adding a web UI. You’ll learn to use a stan-
dard directory structure, and you’ll use Truffle and Node.js (npm) commands to
deploy the smart contract and the web application. Highlights of part 2 include
migrating your smart contracts to public infrastructure Infura and a test chain
Ropsten to allow potentially any decentralized user to access your Dapp. In
short, part 2 shows you how to transform and code a smart contract into a full-
fledged blockchain-based Dapp stack. This stack features a web frontend and a
blockchain distributed ledger for recording transactions and relevant data.

 Chapter 5 introduces security and privacy concepts. You’ll learn about apply-
ing these concepts by designing and developing the blind auction smart contract.
Chapter 6 is about on-chain and off-chain data. You’ll develop the blind auction
(BlindAuction-Dapp) and airline consortium (ASK-Dapp) applications, focusing
on what data goes on-chain and what data stays off-chain. Chapter 7 discusses

accessing blockchain services by using web API and a web3 provider and application-
level concept called side channel. You’ll see all these topics in action by using a micro-
payment channel application (MPC-Dapp). Chapter 8 shows you how to migrate your
smart contracts to a cloudlike infrastructure Infura.

105

Security and privacy

Security and privacy are concerns in any system open to public access, from public
buildings and highways to hardware and software systems. But they are especially
serious concerns in blockchain-based systems. These systems operate beyond tradi-
tional boundaries of trust, such as the one established by a medical provider for its
patients or by a university for its enrolled students. Security in these systems is typi-
cally established by verifying government-issued credentials, such as a driver’s
license and passport, authentication using usernames and passwords, and end-to-
end encryption of messages and communications.

This chapter covers
 Understanding basics of cryptography and public-

private key pairs

 Managing digital identity for decentralized
participants using public-key cryptography

 Using cryptography and hashing for the privacy
and security of blockchain data

 Illustrating security and privacy concepts using
blind auction smart contract

 Deploying smart contracts on a public blockchain

106 CHAPTER 5 Security and privacy

 Advances in the digitization of health information, student records, and the like
have led to regulations to ensure data privacy for the participants. The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA) in the United States provides
data privacy and security provisions for safeguarding medical information. The Family
Educational Rights and Privacy Act of 1974 (FERPA) is a federal law that protects the
privacy of student education records. The data records in these systems are typically
housed in a centralized database, and its access is controlled by traditional methods
such as those listed in the preceding paragraph. But blockchain is a decentralized sys-
tem. In such a system, the participants typically are distributed, hold their assets them-
selves, can join and leave as they wish (within the rules coded in the smart contracts),
have a self-managed identity, are loosely organized, and depend on the blockchain for
the trust layer. Under these conditions, establishing identity and ensuring privacy and
security are indeed challenging—but in this chapter, you’ll learn methods for applica-
tion of cryptography and hashing to address these issues in decentralized systems.

 Remember the quad charts from chapter 3? In the diagram (repeated here in fig-
ure 5.1), the components of trust in the chart on the left—verification, validation, and
recording with consensus—is addressed by smart contract modifiers and transaction
recording on the blockchain (chapter 3). The issues in the quad chart on the right—
identity, security, privacy, and confidentiality—are grouped (in the decentralized con-
text) as contributors to the integrity of the system. Our focus in this chapter will be on
addressing identity (2a), security (2b), and privacy (2c) concerns.

Consensus

ValidationVerification

Recording

Trust

Achieved using smart contract
functions and modifiers

Distributed
immutable
ledger of
blockchain

Defined in
blockchain
protocol

Identity Security

PrivacyConfidentiality

 Integrity

Application of
cryptographic
and hashing
algorithms
and techniques

1a 1b

1c1d

2a 2b

2c2d

Figure 5.1 Elements of trust and integrity

107Cryptography basics

We begin with cryptography, which is at the core of generating account addresses as
an identity for the decentralized participants. Then we explore the hashing tech-
niques to implement security and privacy. You’ll learn how to apply these concepts,
tools, and techniques in designing and developing smart contracts with security and
privacy features.

 We will explore an example application that solves a specific decentralized use
case: a decentralized blind auction. Additionally, the blind auction example will rein-
force the smart contract design principles you learned in chapters 2–4.

 In this chapter, you’ll see how to deploy smart contracts on a new tool: a public test
chain called Ropsten. This approach is a first gradual step forward before deploying on
a real production chain: the Ethereum mainnet, where operations cost real ether. The
reason for introducing a public chain in this chapter is to highlight the importance of
privacy and security when you deploy on a public chain. Let’s begin with cryptography.

5.1 Cryptography basics
Bitcoin and its working cryptocurrency model are based on a strong foundation of
cryptographic research and algorithms developed over more than 40 years. In most of
your everyday programming projects, security is implicit. On the other hand, you’ll
find that cryptography plays an indispensable and explicit role in a decentralized
blockchain-based solution, in which it is used for

 Creating a digital identity for the participants and other entities
 Securing data and transactions
 Ensuring the privacy of data
 Signing documents digitally

A quick review of cryptography fundamentals will help you understand the private-
public key pair that is used in addressing the problem of decentralized identities for
unknown participants. Unlike in a traditional system, in a decentralized system, you
cannot use a username-and-password approach to identify and authenticate a user.
Instead, the technique that is often used is similar to accessing a server instance on a
cloud provider, using cryptographic key pairs.

5.1.1 Symmetric key cryptography

Let’s start by taking a quick look at symmetric key cryptography so you understand the
encryption process and also why this method may not be suitable for decentralized
applications. It’s called symmetric key encryption because the same key is used for
encryption and decryption. Let’s examine the common Caesar encryption. In this
encryption, the individual letters of a message are alphabetically shifted by a fixed
number (key). Consider the message in figure 5.2: Meet me at the cinema. You shift
every letter by 3 to encrypt it; the receiver of your message decrypts it by using the
same “key” and shifting each letter the other way by 3 to view the original message.

108 CHAPTER 5 Security and privacy

In this trivial example, 3 is the encryption key. Because the same key is used for
encryption and decryption, it’s symmetric key encryption. The key and the encryption
and decryption functions are typically much more complex in a real application.
Regardless, symmetric encryption has a significant issue: that of key distribution, or
how to pass the key to the participants secretly. If you make it public, then anybody
can decrypt the message. This issue is further exacerbated in a blockchain-based
decentralized network, in which you’re dealing with unknown participants. To
address this situation, current networked systems use a method in which the keys used
for encryption and decryption are different—asymmetric. Let’s explore the asymmetric
key solution and its relevance to the blockchain-based systems.

5.1.2 Asymmetric key cryptography

Asymmetric key cryptography is commonly known as public-key cryptography. This
method uses two different keys instead of a single secret key (as in symmetric key
cryptography):

 Let {b, B} be {private key, public key} for a participant in Buffalo, New York,
USA.

 Let {k, K} be the key pair for a participant in Kathmandu, Nepal.
 Each participant publishes their public key but keeps their private key safe and

secure, typically using a passphrase.
 Either participant can use the other’s public key to encrypt a message that only

that other person can decrypt, using the corresponding secret private key.

The key pair works as shown in figure 5.3. Input data (Data) is encrypted using func-
tion F and secret private key b, resulting in encrypted message X. The message X is
decrypted using the same function F, but now with a different key—public key B—to
extract the original data.

 Thus, the public-private key pair has a unique property: when a message is
encrypted with the private key, it can be decoded with the public key, and vice versa.
The encryption and decryption keys are not the same; thus, the method is asymmet-
ric. Now the key distribution problem is solved: you can publicize the public key for
anyone to use, keeping the private key safe and secure. This property helps solve not
only the key distribution issue, but also the issue of decentralized participant identity.

 Next, let’s explore how public-key cryptography is used to address many issues in
blockchain and decentralized applications.

Meet me at the cinema Phhw ph dw wkh flqhpd

Message

Encrypt

Transpose right by 3.
Encrypted message

Decrypt

Transpose left by 3.

Meet me at the cinema

Original message

Figure 5.2 Symmetric key encryption

109The relevance of public-key cryptography to blockchain

5.2 The relevance of public-key cryptography to blockchain
Public-key cryptography is used for a range of operations on the blockchain, from
account address generation to transaction signing.

5.2.1 Generating Ethereum addresses

As you learned in chapter 2 (section 2.5), there are two types of accounts in Ethe-
reum: externally owned accounts (EOAs) and smart contract accounts. Open the
Remix IDE, enter any smart contract, compile, and deploy. You’ll see the addresses in
the left panel, as shown in figure 5.4.

Encryption
X = F(Data, b)

Decryption
Data = F(X, B)

Data

Private key b

X
Data

Public key B

Encryption and decryption keys are different.

Figure 5.3 Asymmetric key encryption and decryption

Figure 5.4 EOAs and smart contract accounts

Smart contract account

Externally owned account
addresses

Account balances
of 100 ether

110 CHAPTER 5 Security and privacy

Have you ever wondered how these account addresses (identities) are created? How is
it that they are unique for the participants in the chain? To address these concerns,
Ethereum uses a mechanism based in public-private key pairs to generate account
addresses. Here is a high-level description of the mechanism:

1 A 256-bit random number is generated and designated as the private key.
2 A special algorithm called the elliptic curve cryptography algorithm is applied to this

private key to derive a unique public key.
These two form the {private, public} key pair; the private key is secured by

a password, and the public key is open to the world.

3 A hashing function, RIPEMD160, is applied to the public key to obtain the
account address:
a This address is shorter than the key: 160 bits or 20 bytes. This address is the

account number you see in Remix and the Ganache environment and can be
used as an address on a public blockchain network, as you’ll do later in this
chapter (section 5.2.3).

b The address is represented in hexadecimal for easy readability, as indicated by
the 0x as the first two characters, as in the example 0xca35b7d915458ef540
ade6068dfe2f44e8fa733c.

You’ve been using EOA addresses to send messages to smart contracts, store ether,
and transact on the blockchain. For obvious reasons, account addresses have the strin-
gent requirement to be universally unique. This crucial requirement is addressed by
choosing a large (256-bit) address space and by using a cryptographic mechanism to
generate collision-free (unique) addresses.

5.2.2 Transaction signing

The cryptographic key pair is also used for Tx signing. The private key is used in the
process of digitally signing transactions for authorization and authentication. Recall
that in chapter 4, you used MetaMask to confirm your Txs. One of the operations per-
formed at that time by MetaMask is signing the Txs by using your private key. Similar
to how you secure and protect a credit card, you need to protect your private key to
ensure the security of your assets on the blockchain. Thus, the two main applications
of cryptography besides encryption are generating account addresses (the identity of
decentralized participants and entities) and digitally signing transactions and mes-
sages. Let’s apply these two concepts in deploying a smart contract on a public chain
for the first time in this book.

5.2.3 Deploying smart contracts on Ropsten

So far, you’ve been developing smart contracts and Dapps and deploying them on a
test chain, such as the Remix IDE’s JavaScript VM or the Ganache local test chain, to
gain experience in a controlled environment. Armed with the knowledge of cryptog-
raphy basics, you can now graduate to deploying smart contracts on a public chain.

111The relevance of public-key cryptography to blockchain

Ropsten is a public test network that implements the Ethereum blockchain protocol,
but with mock ether. Ropsten is ideal for experimenting with your deployment after
completing initial tests in Remix and other test networks. Before you deploy on Rop-
sten, you’ll need a few items to set up the environment:

 A wallet for managing accounts and signing transactions. You can use MetaM-
ask to manage your Ropsten accounts and their (test) ether balance.

 A method for populating this wallet with a deterministic set of test account
addresses.

 A Ropsten faucet for depositing test ether into the accounts for Tx execution
and ether transfer among peer participants.

 The Remix IDE’s injected web3 environment for supporting the Ropsten
accounts through MetaMask and interacting with the smart contract through its
user interface.

 A smart contract ready to be deployed on the Ropsten network. You’ll use the
Counter smart contract (section 5.2.6) for this initial deployment.

5.2.4 Using the private key in mnemonic form

The 160-bit account addresses are cryptographically generated from the 256-bit private-
public key pair. You need this private key every time you want to generate/recall your
account addresses. It is simply impossible for you to remember this private key. Instead,
a mnemonic is used to represent the private key.

NOTE BIP39 (http://mng.bz/awoJ) stands for Bitcoin Improvement Protocol 39,
which was developed to define a method to use a mnemonic to represent a private
key. The mnemonic representation of a private key is equally applicable to any
blockchain platform, including Ethereum.

You can obtain a 12-word mnemonic from a web tool called BIP39 (https://iancoleman
.io/bip39). As shown in figure 5.5, use 12-word, ETH, and English as parameters, and
click Generate. You’ll get a unique 12-word mnemonic that’s useful for any Ethereum-
based blockchain.

 Keep this mnemonic safe; do not share it. Treat it like your Social Security number.
The mnemonic is used for cryptographically generating a deterministic set of account
addresses. Using this mnemonic, you can populate a wallet with a deterministic set of
accounts for operating on any Ethereum-based blockchain network.

http://mng.bz/awoJ
https://iancoleman.io/bip39
https://iancoleman.io/bip39
https://iancoleman.io/bip39

112 CHAPTER 5 Security and privacy

5.2.5 Populating a blockchain wallet

Let’s use the cryptographic key pair to generate a wallet so that we can operate on a
public blockchain by generating the accounts from the mnemonic copied from the
BIP39 tool (section 5.2.4) and by collecting ether as deposits in the accounts. Here is
a way to use the cryptographic mnemonic you saved in section 5.2.4:

1 Open the Chrome browser where MetaMask is installed, and connect to Rop-
sten by choosing Ropsten Test Network from the Networks drop-down list. (You
may have to click MetaMask, click the round account icon, and log out before
completing this step.)

2 Click Import, using the account seed phrase, and in the text box that opens, enter
the mnemonic you generated in section 5.2.4. This interface requires a password;
enter the password twice and then click the Restore button. (This step is similar
to connecting to the Ganache test chain from MetaMask in chapter 4.)

3 To create any number of accounts, click the Create Account button in Meta-
Mask; copy one of the new account addresses that shows up to the clipboard.
This account is a valid account of the Ropsten network. You’ll notice that you
have 0 ether balance.

4 Use the copied address to receive the test ether from a Ropsten faucet tool as
shown in the next two steps.

Other information
....
....

1. Change this to 12.

2. Choose English.

3. Choose Ethereum.

Mnemonic will appear here

Figure 5.5 BIP39 web tool for cryptographically generating a mnemonic

113The relevance of public-key cryptography to blockchain

To work on Ropsten, you need to receive some test ether, which you can do by access-
ing any Ropsten faucet. Follow these steps:

1 In your browser, navigate to the Ropsten faucet page (https://faucet.ropsten.be),
shown on the left side of figure 5.6.

2 Paste in the address you created in MetaMask and copied to your clipboard,
and then click the Send Me Test Ether button. After a short time, you’ll receive
1.0 ether credited to the MetaMask account you created.

You can get 1 ether every 24 hours on this particular faucet, which is sufficient for
making the initial deployment and learning about this public test blockchain. You’ll
have to repeat this operation to get more ether.

5.2.6 Deploying and transacting on Ropsten
Let’s use the simple Counter smart contract (listing 5.1) to demonstrate the deploy-
ment on Ropsten. By now, you must have realized that you need account balances in
ether to deploy and operate on public blockchain networks. Every transaction costs
ether, though typically only a fraction.

pragma solidity >=0.4.21 <=0.6.0;
// Imagine a big integer counter that the whole world could share
contract Counter {
 uint value;

 function initialize (uint x) public {

Listing 5.1 Counter.sol

Figure 5.6 Obtaining test ether from a Ropsten faucet

1. Ropsten faucet 2. MetaMask

4. Receive 1.0
test ether.

3. Copy and
paste account
number.

https://faucet.ropsten.be

114 CHAPTER 5 Security and privacy

 value = x;
 }

 function get() view public returns (uint) {
 return value;
 }

 function increment (uint n) public {
 value = value + n;
 return;
 }

 function decrement (uint n) public {
 value = value - n;
 return;
 }}

Save the code in listing 5.1 as Counter.sol in the Remix editor. Compile it, making
sure that there are no errors, and then set the environment to Injected Web3 (instead
of JavaScript VM). Figure 5.7 shows the setting of the Inject Web3 supported by
MetaMask.

Make sure that your account number in MetaMask shows up in the Account box in
the Remix IDE, synchronizing the IDE with MetaMask and the Ropsten test network.
If it does not, you will have to unlock MetaMask with your password and change the
Privacy Mode setting to Off so that public participants can access your smart contract.

 Now deploy the smart contract by clicking the Deploy button. You should see the
deployment getting confirmed on the Ropsten network, with the transaction link on
Ropsten Etherscan displayed in the console window:

https://ropsten.etherscan.io/tx/0xafeeb62d9a12a8d7ad08b38977040e795bd3d6f6d5e
1d404c534aa28744e421d

Injected Web3 is MetaMask.

Deploy will result
in deployment on Rospten.

Account number on Remix
and MetaMask

Figure 5.7 Remix-MetaMask-Ropsten link via Injected Web3 environment

115The relevance of public-key cryptography to blockchain

Figure 5.8 shows the actual Tx scan I created when I wrote this chapter. It shows the
Tx hash, the block number with many confirmations (because it was recorded a while
earlier), the From address of the Tx, and the To address (a smart contract address).
Isn’t it cool that you can see the Tx I created a while ago on the scan in the future
when you read this book? Don’t miss this exploration. This is a foundation for many
things that you’ll do in later chapters.

Now you can interact with the smart contract by using the user interface provided by
Remix. Initialize the counter to 500, decrement it by 200, get the value (which should
be 300), and increment it by 200. Then get the value again: it should be 500. You’ll
have to confirm each transaction in the MetaMask window that pops up. It takes lon-
ger to get the corresponding transaction confirmations for all these interactions on
Ropsten than it does in the Remix local environment.

 You have successfully deployed a smart contract on a public network for the first
time. It’s important to think about this: your contract is public to participants on Rop-
sten, so it is not private anymore. You’d better protect and secure any sensitive data
that’s transacted!

 When you deploy a smart contract on a blockchain like Ropsten, where somebody
else can interact with it, you have to realize that it’s visible to everyone within the
blockchain network on which it is deployed, whether that network is private, public,
or permissioned. Although this concern is an obvious one for with decentralized pub-
lic participation, in all these cases, you must be aware that data transmitted through
the function parameters—such as bid values in a blind auction—has to be kept private
and secure.

 We’ll examine in section 5.4 how a combination of cryptography and hashing is
used to address these issues. Thus cryptography is used not only in establishing the
identity of a decentralized participant, but also in secure hashing for privacy and
security.

Tx hash

Block with many confirmations

From address and
To contract address

Figure 5.8 Tx of contract deployment recorded on Ropsten as seen on Etherscan

116 CHAPTER 5 Security and privacy

5.3 Hashing basics
Hashing is a transformation that maps data of arbitrary sizes to a standard fixed-size
value. The hash of data elements are computed by using a hash function, as shown
here:

hash = hashFunction(one or more data items)

Using a logical XOR (exclusive OR) function as a simple hash function and two data
items of a =1010 binary, b= 1100 binary, you get the hashed value of the two data items
as 0110:

hash value = xor(a=1010, b=1100) = 0110

DEFINITION Hashing is the process of mapping data of an arbitrary length to a
fixed size by using a specially defined function called a hash function.

Even a single bit change in the data elements changes the hash value of the data ele-
ments significantly. Any type of data, including a database or an image, can be suc-
cinctly represented by a hash of fixed length, as shown in figure 5.9. A 256-bit data
item and a strong hash function together provide a large, collision-free account
address space. Collision-free means there is a high probability that no two values gener-
ated by the hash function will be the same and that you’ll get a unique hash value
when you apply the hashing function to the same data elements. This property is an
important requirement of a hash function: you don’t want to have the same identifica-
tion number as your friend!

Figure 5.9 Transforming different types of data to 256-bit hashes

256-bit hash 256-bit hash

60

40 20

30

20

10 10

10

10

256-bit hash
Database

256-bit hash

— Hash function

Document:
large or small

volumes Block
header

Different types of
data, each hashed
into 256-bit hash

117Hashing basics

5.3.1 Digital signing of documents

For the digital signing of a document, a hash function is used to compute a hash of
the document. This hash is used as the digital signature for the document and
attached to the document by the sender. This signature can be verified later by the
receiver of the document by recomputing the hash of the document and comparing it
with the attached digital signature (hash).

5.3.2 Hashed data on distributed ledger

Blockchain is not your regular database; it stores only the minimal data needed in its
distributed ledger. Hashing helps here too! The blockchain isn’t overloaded by a large
document because only the hash value (representation) of the document can be
stored on the chain. You’ll learn more about the versatility of hashing when we
develop our decentralized system model further with on-chain and off-chain data in
chapter 6.

5.3.3 Hashes in Ethereum block header

Recall from chapter 1 that the blockchain is a tamperproof immutable ledger consist-
ing of blocks that contain records of transactions, mutable state, logs, return values
(receipts), and many other details, as shown in the Ethereum block header diagrams
in figure 5.10. Txs, state, logs, and receipts are stored in a Merkle tree (trie) data
structure, and the hash of this tree is stored in the header. The header also stores a
hash of the previous block’s header, forming a link to the previous block, constructing
the chain, and enforcing immutability. Even a single bit change in the block’s con-
tents will change its hash significantly, thus breaking the chain; so as you can see, the
block hashes are instrumental in realizing the immutability and integrity of the chain!

Figure 5.10 Ethereum block headers (partial) for block n and block n+1

Nonce

Timestamp Block number

Difficulty Beneficiary

Gas used Gas limit

Tx tree root

Other info

Block n + 1 header

Nonce

Timestamp Block number

Difficulty Beneficiary

Gas used Gas limit

Tx tree root

Other info

Block n header

Hash
function State tree

root
State tree

root

Prev block
hash

Prev block
hash

118 CHAPTER 5 Security and privacy

Hashing is a core component of the consensus process for deciding the next block to
be appended to the chain. Hashing is also a recommended preprocessing step for
encryption of messages and digital signing of transactions. It plays an important role
not only at the protocol level, but also at the application level.

5.3.4 Solidity hashing functions

Here are three hashing functions provided by Solidity: SHA256, Keccak (also a 256-bit
hash function), and RIPEMD160. Recall from section 5.2.1 that RIPEMD160 is used in
the generation of a 160-bit account address from the 256-bit public key of an Ethereum
account. Keccak was developed for Ethereum based on the SHA3 (secure hash) algo-
rithms. You’ll use Keccak as your hash function for Dapp development because it was
implemented for the Ethereum blockchain before SHA3 was finalized as a standard.

 How can you compute a hash value for a set of data? Here is some simple Solidity
code for the Keccak hash function. You can use this function to compute the Keccak
hash, as shown in the next listing.

pragma solidity >=0.4.22 <=0.6.0;

contract Khash {

bytes32 public hashedValue;
function hashMe(uint value1, bytes32 password) public
{
 hashedValue = keccak256(abi.encodePacked(value1, password));
}
}

The function abi.encodedPacked packs the parameters (any number) and returns
byte representation of different types of parameters, and the keccak256 function com-
putes the hash. You can use this smart contract to compute the Keccak hash values for
20, 30, and so on with the password 0x426526. The only caveat is that you need to
input all 32 bytes for the password, as this long hexadecimal number in the latest ver-
sion of Remix. This representation is to be expected, because we are in the 256-bit
realm when dealing with blockchain computing. Here are the 32 bytes of the pass-
word with the leading 0x, indicating that the string is hexadecimal:

0x42652600

You can verify that with this password and values of 20 and 30, the hashes computed by
the preceding code are (for 20)

0xf33027072471274d489ff841d4ea9e7e959a95c4d57d5f4f9c8541d474cb817a

and (for 30)

0xfaa88b88830698a2f37dd0fa4acbc258e126bc785f1407ba9824f408a905d784

Listing 5.2 Smart contract for hashing (KHash.sol)

119Application of hashing

Let’s apply these concepts to solve a new decentralized application.

5.4 Application of hashing
Let’s explore secure hashing for realizing privacy and security in a decentralized appli-
cation. For this purpose, we’ll consider the blind auction problem described in the
Solidity documentation (https://solidity.readthedocs.io/en/v0.5.3). As with the vot-
ing and ballot problems, the requirements of this problem have been altered signifi-
cantly to enable us to focus on privacy and security issues.

PROBLEM STATEMENT: A beneficiary plans a blind auction for a piece of art-
work. There may be many pieces to be auctioned off, but for this problem,
you’ll consider only one; you can always add others after this piece is sold.
The beneficiary controls the various stages of the auction, {Init, Bidding,
Reveal, Done}. After initiation by the beneficiary, the bidders bid one bid at
a time during the Bidding phase, providing their bids securely and privately.
Others, including the beneficiary, cannot see what each bid is. After a while,
the beneficiary advances the stage to the Reveal phase. Now bidders openly
send their bids, and the beneficiary opens the bids and identifies the highest
bidder and highest bid. The beneficiary ends the auction by advancing the
stage to Done, at which time the auction ends. The highest bid value is trans-
ferred to the beneficiary account. Nonwinner bidders can withdraw their
deposits, and the winning bidder is returned the balance of their deposit.

Take a few minutes to review the problem statement and understand and play the
steps in your mind or on paper before you proceed to design the solution.

5.4.1 Blind auction design

Let’s study the problem and apply the design principles (DPs) you’ve learned, which
are provided in appendix B. You’ll use DP 2 and DP 3 to guide you in defining the
data structures. You’ll represent the design by using a contract diagram (DP 4) and
the auction state transitions by using a finite state machine (FSM; DP 5), and you’ll
use modifiers for any rules (DP 6) to be implemented by the smart contract. Applying
the DPs provides a structured approach to starting blockchain solution development.

 Do you see the pattern in the states of the auction? They’re similar to the states in
the Ballot-Dapp. After all the DPs are applied, the contract diagram and the state tran-
sition diagram are as shown in figure 5.11. Before you start coding, make sure that you
understand the process using the FSM on the left side of figure 5.11. In particular, note
the Bidding and Reveal phases: blind bidding happens during the Bidding phase. A
deposit is required for every bid; this deposit should be higher than the bid value. After
all the blind bids are placed, the participants once again send their bid (open this
time) during the Reveal phase. The winner is decided during the Reveal phase.

 This problem is complex, but it exemplifies a pattern that is highly useful in many
large systems, such as marketing and financial domains. Take your time to explore the
ideas described here, and reuse them in your applications.

https://solidity.readthedocs.io/en/v0.5.3

120 CHAPTER 5 Security and privacy

5.4.2 Blind auction smart contract

The smart contract for the blind auction is a modified version of the code in the Solid-
ity documentation, enabling us to focus on privacy and security concerning only one
item: blindedBid. Let’s review the code and then use the Remix IDE to test the smart
contract. You can copy the listings to the Remix IDE as directed and explore it. Let’s
look at the following:

 Data elements (listing 5.3)
 Modifiers (listing 5.4)
 Functions (listing 5.5)

The data elements include data for the bid, an enumerated data type for the phases
(states) of the auction, the beneficiary address, mappings for bids and deposit returns,
and the highest bid details. These elements are defined in the next listing. Review the
code, and load it into Remix.

pragma solidity >=0.4.22 <=0.6.0;

contract BlindAuction {

 struct Bid {
 bytes32 blindedBid;

Listing 5.3 Data for blind auction (BlindAuction.sol)

BlindAuction

address beneficiary

struct Bid { bytes32 blindedBid; uint deposit}

mapping (address=>Bid)

mapping (address=>int) depositReturn;

address highestBidder

int highestBid

modifier onlyBeneficiary

modifier validPhase

constructor()

changeState(nextState)

bid(blindBid) payable

reveal(bidValue, secret)

placeBid() internal

auctionEnd()

withdraw()

Created

 Init Reveal DoneBidding

Functions

Modifiers

Data
structures

Bid reveal happens
in this stateBlind bid happens

in this state

Beneficiary manages
transition of stages

Figure 5.11 State transition FSM and contract diagram for a blind auction

Bid details

121Application of hashing

 uint deposit;
 }

 // state will be set by beneficiary
 enum Phase {Init, Bidding, Reveal, Done}
 Phase public state = Phase.Init;

 address payable beneficiary; // owner
 mapping(address => Bid) bids;

 address public highestBidder;
 uint public highestBid = 0;

 mapping(address => uint) depositReturns;

The blind auction problem has two main rules: the beneficiary decides on the timing
of the starting, ending, Bidding, and Reveal phases of the auction, and only the bene-
ficiary can change the phase from one to the next. These conditions are shown in the
following listing, implemented as the modifiers validPhase and onlyBeneficiary.
You can insert them into code (listing 5.3) already loaded in the Remix IDE.

 // modifiers
 modifier validPhase(Phase reqPhase)
 { require(state == reqPhase);
 _;
 }

 modifier onlyBeneficiary()
 { require(msg.sender == beneficiary);
 _;
 }

5.4.3 Privacy and security aspects

In a blind auction, during the Bidding phase, bidders place blind bids; thus, the con-
tents of the bids (values) are private as well as secure. How do you guarantee privacy and
security? You can achieve privacy by hashing the parameters. But although a hash may
appear to human eyes to be indecipherable, it can be broken by brute force. The Kec-
cak hash for the integer value (uint) 20, for example, is the same whether you’re on the
Earth, Moon, or Mars, in Lagos (Nigeria), or New York (United States), as follows:

0xce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec

This 32-byte hash value might look like gibberish to you, but a brute-force attack with
knowledge of the approximate context and value of the auction item could easily deci-
pher the bid value if so desired. So how do you secure it from such an attack? You can
use a nonce or a secret password as the second parameter. This secret is like a personal

Listing 5.4 Modifiers for blind auction (BlindAuction.sol)

Auction state details

Contract deployer
is the beneficiary

Only one bid per address

Details of the
highest bidder

Returns of deposits
for nonwinners

Modifier for phases
of the auction

Modifier checking
beneficiary

122 CHAPTER 5 Security and privacy

identification number for your debit card. In this case, computing the Keccak hash of
the value, packed up with the second secret password, makes it secure. These various
forms of value 20 are shown in table 5.1. The first column is the plain data value, 20
(open); the second column is the Keccak256 hash of 20 (private but not secure); and
the third column is the Keccak256 hash of 20 and the password (in this case, 0x426526)
of choice from the decentralized participant (private and secure). In the table, the
abi.encodePacked() function of Solidity creates a byte form of parameters before Kec-
cak hashing. That’s a simple hashing technique for privacy and security that you can
apply in similar situations and, hence, another design principle that you can use in
your applications to achieve these goals.

DESIGN PRINCIPLE 7 Ensure the privacy and security of function parameters
by secure-hashing the parameters along with a single-use secret password.

Finally, there’s the utility function changeState(), which can be called only by the
beneficiary. The functions bid(), reveal(), and auctionEnd() can be called only
when the auction is in the correct phase, as specified by the validPhase() modifier
defined in listing 5.4.

 In the Reveal phase, all the (private and secure) valid bids are in by then. The bid-
der reveals the bid value as well as the secret password. It’s okay to reveal the password
because it is a one-time, single-use password decided by the bidder. The smart con-
tract function reveal() computes the hash of the bid and the secret password, and
verifies that it matches that of the blind bid sent earlier. If the hash does match, the
contract accepts the bid (the placeBid() function) and evaluates it to see whether it
is the highest. These checks for verifying the correctness of the blind bid are imple-
mented with if statements.

 You can add the code in the next listing to the code (listings 5.3 and 5.4) you
added earlier to the Remix IDE. Review this code to explore these functions further
before moving on to test this smart contract.

 constructor() public {
 beneficiary = msg.sender;
 state = Phase.Bidding;
 }

 function changeState(Phase x) public onlyBeneficiary {

Table 5.1 Keccak hashing for privacy and security

Open Private for human eye (256 bits) Private and secured by password (256 bits)

Plain data keccak256(abi.encodePacked(20)) keccak256(abi.encodePacked(20, 0x426526))

20 0xce6d7b5282bd9a3661ae061… 0xf33027072471274d489ff841d4ea9e…

Listing 5.5 Functions of the blind auction (BlindAuction.sol)

Constructor sets
the beneficiary

123Application of hashing

 if (x < state || x != Phase.Init) revert();
 state = x;
 }

 function bid(bytes32 blindBid) public payable validPhase(Phase.Bidding)
 {
 bids[msg.sender] = Bid({
 blindedBid: blindBid,
 deposit: msg.value
 });
 }

 function reveal(uint value, bytes32 secret) public
 validPhase(Phase.Reveal)
 {
 uint refund = 0;
 Bid storage bidToCheck = bids[msg.sender];
 if (bidToCheck.blindedBid == keccak256(abi.encodePacked(value,
 secret)))
 {
 refund += bidToCheck.deposit;
 if (bidToCheck.deposit >= value) {
 if (placeBid(msg.sender, value))
 refund -= value;
 }}

 msg.sender.transfer(refund);
 }

 function placeBid(address bidder, uint value) internal
 returns (bool success)
 {
 if (value <= highestBid) {
 return false;
 }
 if (highestBidder != address(0)) {
 // Refund the previously highest bidder
 depositReturns[highestBidder] += highestBid;
 }
 highestBid = value;
 highestBidder = bidder;
 return true;
 }

 // Withdraw a non-winning bid
 function withdraw() public {
 uint amount = depositReturns[msg.sender];
 require (amount > 0);
 depositReturns[msg.sender] = 0;
 msg.sender.transfer(amount);
 }
 }

Blind bid
function

reveal() function
checks blind bid

placeBid() is an
internal function.

withdraw() is
invoked by losers.

124 CHAPTER 5 Security and privacy

 // End the auction and send the highest bid to the beneficiary
 function auctionEnd() public validPhase(Phase.Done)
 {
 beneficiary.transfer(highestBid);
 }
}

Now it’s time to test the blind auction smart contract. You can do that by using the
Remix IDE or the Truffle console; you can even make it into a full-fledged end-to-end
Dapp after developing the web front end. We’ll implement an improved version of the
blind auction smart contract and a full Dapp in chapter 6. In this chapter, let’s focus
on learning the secure hashing by exploring the application through the Remix IDE.

5.4.4 Testing the BlindAuction contract

You’ll need a test plan (as discussed in chapter 3) to explore the operation of the
smart contract code for the blind auction. Let’s assume the following as preparation
before testing:

 You need at least three participants: the beneficiary and at least two bidders.
Let’s choose the first three accounts of the Remix IDE: account[0], account[1],
and account[2], with addresses that begin with 0xca3..., 0x147…, and 0x4b0…,
respectively. You have to choose account[0], account[1], and account[2] from
the drop-down list in the Remix simulated environment.

 account[0] will be the beneficiary, the one that deploys the smart contract, and
the only one that can change the phase of the auction. For account[0], I’ve
used the address 0xca3….

 account[1] and account[2] will be the two bidders for testing purposes. I used
0x147.. for account[1] and 0x4B0.. for account[2].

 account[1] will place a blind bid of 20 with a deposit (value) of 50 wei, and
account[2] will place a blind bid of 30 with a deposit of 50 wei.

 The secret one-time password or the secret is 0x426526; the 0x indicates hexa-
decimal notation. You need the entire 32 bytes when entering it in the Remix
UI. Here it is:

0x42652600

 The bid is computed by the Keccak function Keccak256(abi.encoded-

Packed(v, secret), where v=20 for account[1] and v=30 for account[2]. For
your convenience, I provide the 256-bit password and the encoded values for 20
and 30 at the bottom of BlindAuction.sol. You can easily copy and paste when
transacting in the Remix IDE.

auctionEnd() function is
invoked in the Done phase.

125Application of hashing

5.4.5 Test plan

Compile and deploy the BlindAuction contract in the Remix IDE. Make sure that
you’re in account[0] when deploying. Click the state button representing the public
variable state; it should be 1 for the Bidding phase. Here is a minimal test plan (refer
to figure 5.12 to follow along):

1 Bidding phase.
From account[1], set the value (top-right panel of figure 5.12) to 50 wei.

Specify the first blind bid value of 20 as

0xf33027072471274d489ff841d4ea9e7e959a95c4d57d5f4f9c8541d474cb817a

as the parameter for the bid() function, and click Bid. Repeat the process for
account[2], but with the second blind bid value of 30 as

0xfaa88b88830698a2f37dd0fa4acbc258e126bc785f1407ba9824f408a905d784

as the parameter. Now the Bidding phase is over.

2 Reveal phase.
From account[0], the beneficiary account, enter 2 as the parameter for the

changeState() function, and click the ChangeState button. Click the button
for the state public variable to make sure that the value is 2 for the Reveal
phase. From account[1], enter 20, 0x4265260000000000000000000000000000000
000000000000000000000000000

as parameters for the function reveal(), and click Reveal. Now click the High-
estBidder and HighestBid buttons to check that they’re correct. You’ll see
account[1]’s address and a bid of 20.

Repeat the reveal from account[2] but with 30, 0x4265260000000000000000
00

as parameters. Then click the HighestBidder and HighestBid buttons again to
verify that the bid of 20 has been knocked off by account[2]’s bid of 30. The
Reveal phase is over.

3 Done phase.
From account[0], the beneficiary account, enter 3 as a parameter for the

changeState() function; then click ChangeState. Click the button for the
state public variable to make sure that the phase is Done. Now you can click the
auctionEnd() button to pay the beneficiary the highestBid amount.

4 Check out the winner.
Click the HighestBidder and HighestBid buttons again to find the winner’s

values.

5 withdraw() function.

126 CHAPTER 5 Security and privacy

The nonwinning accounts can click this function button to be refunded the
deposit they paid, in case they were not already returned by the bid() function,
which itself returns any lower bid.

Bidder1: Account[1]

50 wei deposit

Highest-bidder details

Reveal of bid: Bid, one
time password

Blinded bid: Keccak
(30, one-time password)

Figure 5.12 Testing the BlindAuction contract in the Remix IDE (deploy panel and user
interface)

You have completed a walk-through of a basic blind auction with two bidders and a
beneficiary. You can test other cases, such as when a bid is rejected during the Reveal
phase because it was placed by an imposter who does not know the secret code used
when hashing the blind bid. Recall that simple hashing of the parameter value can
provide privacy, but hashing the parameters with a secret code provides security. The
method used here is not a direct encrypt and decrypt, as you would see in traditional
programming. The technique used for hashing in the blind auction illustrates a differ-
ent approach to privacy and security—one that is appropriate for decentralized block-
chain applications.

5.5 Retrospective
In the blind auction problem, the parameters (auction bid details) need to be kept
private and secure in one of the phases but can be revealed to the public in another
phase. Privacy and security are achieved during the Bidding phase by secure-hashing
the parameters; when the parameters are revealed during the Reveal phase, the bid is
verified by computing the hash from the revealed parameters and matching the hash
sent during the Bidding phase. Thus, the approach used in the blind auction is not
implementing security and privacy in the traditional sense of encrypting data with a
private key and then decrypting it with a public key.

 Other problems have similar hide-and-reveal phases, such as online quizzes and
exams, requests for proposals (RFPs) in business contract bidding, and games such as
poker (which has play, bet, and reveal phases).

 Also, notice that the hashes and identities in the blockchain context use a 256-bit
address space and 256-bit computations. This large address space ensures both the
uniqueness of decentralized identities and an extremely low probability of collisions
for hash values.

5.6 Best practices
Here are a few security-related best practices to keep in mind:

 Private-public key cryptography plays an indispensable role in uniquely identify-
ing an account. As you secure and protect a credit card, you need to protect the
private key for the security of your assets on the blockchain.

 Pay attention to the hashing technique used to achieve the privacy and security
of data (parameters) transmitted in a decentralized blockchain-based system.

5.7 Summary
 This chapter demonstrated onboarding a smart contract on the Ropsten public

chain and interacting with it, with truly decentralized access.
 You learned to use one more execution environment: Inject Web3.
 Cryptographic algorithms and techniques are used in the implementation of

self-managed decentralized identity, with a unique 256-bit account number
derived from a private key.

128 CHAPTER 5 Security and privacy

 Transactions generated by an account are digitally signed, using the account’s
private key. In this chapter, MetaMask facilitated this process, so you didn’t
observe it openly in the examples except when MetaMask asked for confirma-
tion (via its Confirm pop-up screen).

 Using secure Keccak hashing, as was done for the blind auction problem, is a
privacy and security technique that is suitable for decentralized applications.

 Using a secret code or password in the parameter list of the blind bid helps
ensure the privacy and security of the data by obfuscating the bid value.

129

On-chain and
 off-chain data

This is it. This is what distinguishes blockchain application development from that
of non-blockchain applications: on-chain data. Do you wonder where the data
associated with a Dapp is stored? Some are stored on the blockchain infrastructure
(on-chain), and others in traditional databases and files (off-chain). In this chapter,
you’ll learn first about the concept of on-chain data introduced by the inclusion of
blockchain features in an application. Then you’ll learn to design and develop
Dapps that deal with a combination of on-chain and off-chain data.

This chapter covers
 Exploring different kinds of on-chain data: blocks,

transactions, receipts, and state

 Defining, emitting, and logging events

 Accessing event logs from transaction receipts to
support Dapp operations

 Designing and developing Dapps with on-chain
and off-chain data

 Demonstrating on-chain and off-chain data using
ASK and blind auction Dapps

130 CHAPTER 6 On-chain and off-chain data

 So what exactly are these two types of data in the context of blockchain
programming? In general, any data stored on the blockchain is called on-chain data,
and anything else is off-chain.

 Let’s analyze this concept further. In a traditional system, the results of function
executions in an application are persisted in a local filesystem or a central database. A
blockchain application stores the following on the blockchain node (on-chain):

 Transactions executed and confirmed
 Results of smart contract function execution
 State changes (changes in storage variable values)
 Logs of events emitted

These data are stored in designated data structures on a blockchain node and propa-
gated to other stakeholder nodes as specified by a blockchain protocol.

DEFINITION On-chain data is a set of information generated by transactions ini-
tiated by blockchain-based applications and the items used during blockchain
materialization. Most of this data is stored in a block and its header.

Figure 6.1 compares a traditional application and a blockchain-based application. The
traditional system on the left has data stored in a filesystem or database. On the right
is a blockchain application, with its familiar <Dapp>-app and <Dapp>-contract parts.
In general, Dapp contract–generated data is stored on-chain, and data created and
used by the Dapp app is stored off-chain. The function calls from a Dapp invoke a
smart contract, the Txs are generated, and related artifacts are recorded on the block-
chain. In figure 6.1, follow the arrows from the <Dapp>-app to understand the
on-chain data. In this chapter, you’ll explore this relationship between the on-chain
and off-chain data.

Blockchain-based
application

Off-chain data

On-chain data

<Dapp>-contract

Blockchain Blockchain

<Dapp>-app

Database

Data
Function call

Traditional
application

Database

No blockchain:
conventional database and
filesystem

Data

Txs, state, smart
contract Txs, event

logs

Figure 6.1 Traditional application vs. blockchain Dapp with on-chain and off-chain data

131On-chain data

The left side of figure 6.1 shows a traditional application, with its conventional data
stores. The right side of the figure shows the same system enhanced by blockchain
recording of on-chain data. Thus, a blockchain-based system is a part of a larger system,
which may be an enterprise system or a web-based system that stores data in a conven-
tional database or on a local filesystem. An enterprise system, for example, may manage
all its business data in a centralized private and secure database; it may also maintain a
blockchain-based system for its decentralized operations. So in a typical business sys-
tem, you’ll have to deal with both categories of data: off-chain and on-chain.

NOTE Understand that when you’re developing a Dapp, you aren’t porting
your traditional system into the Solidity language; you’re coding only the
parts of a larger system that need blockchain support.

Given a decentralized scenario, a significant task in designing a Dapp is identifying
the following:

 The activities that are the responsibility of the traditional part of the larger system
 The activities that are the responsibility of the blockchain application

Equally significant is the need for blockchain application designers and developers to
decide the following:

 Which data will be stored on-chain
 Which data will be stored off-chain

These are the main issues that you’ll see addressed in this chapter. In particular, you’ll
learn about event notification (on-chain data) and how to use it. You should already
have an intuitive feel for what is on-chain data. You’ll begin by examining different
types of on-chain data in the Ethereum blockchain. Next, you’ll explore the use of
on-chain data in the blind auction Dapp introduced in (chapter 5). Then you’ll learn
to use both off-chain and on-chain data in the familiar example of the ASK airline
Dapp (chapter 2). For each of these applications—blind auction and ASK airline—
we’ll design and develop an end-to-end application with a web UI.

6.1 On-chain data
Transactions are not the only data stored on the blockchain. A blockchain protocol
determines the different types of on-chain data. In Ethereum protocol, as shown in
figure 6.2, a block is made up of several elements, each serving a specific purpose:

 The blockchain header (6A) stores the attributes of the block.
 Transactions (6B) store the details of the Txs recorded in the block.
 Receipts (6C) store the execution results of Txs recorded in the block. Every

transaction has a receipt; the 1:1 relationship in figure 6.2 depicts this fact.
 A composite global state (6D) stores all the data values or current state of the

smart contract accounts and other regular accounts on the blockchain and is
updated when Txs that use them are confirmed.

132 CHAPTER 6 On-chain and off-chain data

In addition to these items, observe the hash symbols in this figure, indicating that
item 6A—the block header—contains (stores) the hashes of items 6B, 6C, and 6D.
The hash of these items is the hash of the current block. The hash of the current
block is stored in the next block added to the chain. Thus, the hash of a block stored
as part of the following (newly added) block forms the chain link of the blockchain.

As shown in figure 6.2, the block header, Tx tree, and receipt tree are per-block data
structures. That characterization means that for every new block added to the chain,
there is a new instance of the block header, a new Tx tree, and a new set of receipts.

 On the other hand, the state tree is a per-blockchain data structure: it stores the cur-
rent state of all the accounts on the blockchain, starting from the genesis block. The
state tree records the history of what happened on the blockchain as a whole and how
it happened. Its state keeps changing as affected by the Txs executed. The state infor-
mation is valuable information for verifying that certain Txs took place and for mining
(or searching) for particular actions, changes, and events. You can analyze the on-chain
data stored over a range of blocks to identify a pattern in transactions issued for a spe-
cific smart contract, for example.

 I’m sure that you’re eager to start coding, but a good understanding of these
elements will help you design better Dapps. As you’ll recall from chapter 3, the

Figure 6.2 Elements of on-chain data

6A. Attributes of the
current block:
a per-block structure

Block header with
chain link hash,
logsBloom, and
other info

Transaction tree–
set of Txs and
details of Txs

State tree–
composite state of
all accounts’ storage
data

Receipt tree–
success status, gas
status, and event
logs

 On-chain data

Hash

Stored on
local storage of a
blockchain node

6B. A block has a
set of unique Txs:
a per-block structure

6C. A set of receipts one per
Tx: a per-block structure

1:1

Every Tx has a receipt.

Hash

6D. Global state of
blockchain as it grows:
a per-blockchain
structure

133Blind auction use case

blockchain is not your regular database, and you’ll want to keep only essential data in
there. The information provided in this chapter will help you organize your on-chain
data by designing the Txs, receipts, and state variables of your applications so as not to
overload the chain. This knowledge will also be useful in extracting on-chain data
records for offline analytics and decision-making.

6.2 Blind auction use case
The four items we’ve just examined—block header, Txs, receipts, and state storage—
form the majority of the on-chain data. This data plays a significant role in ensuring the
robustness and security of the blockchain, and also provides proof of existence for
transactions and events. You can access the information stored on the blockchain to
support operations at the application level. To illustrate these concepts, we’ll explore
an improved version of the blind auction application that was introduced in chapter 5.

 As you’ve seen, the kinds of on-chain data are strictly controlled by the blockchain pro-
tocol, with the actual data values being determined by the Txs originating from the appli-
cations. You must be aware of this limitation when designing your blockchain-based
systems. For the blind auction use case, we’ll focus on one of the on-chain data elements:
the event logs stored in the receipt tree. Let’s begin by considering the following:

 What an event is
 How to define an event
 How to emit an event
 How to use event logs in the Tx receipts to provide notifications to the user via

the UI

6.2.1 On-chain event data

Events are notifications that can be emitted from functions to indicate the presence of
a condition or flag during a smart contract function’s execution. Solidity provides
features to define and emit an event with and without parameters. Events are logged
on-chain, in the receipt tree, and can be accessed by their names.

 You can define an event anywhere in the smart contract code before you use it.
Still, it’s a good idea to set aside a standard location to define the events in your design
and coding so that they can be easily identified during the development and code
review process. You can define events in the smart contract right after the type and
variable declarations. Here is the syntax for an event definition:

event NameOfEvent (parameters);

Event names in Solidity begin with an uppercase letter and then use camel case. There
can be three parameters at most. This limitation is set by Solidity to avoid overloading
the chain and to enable efficient management of the event logs. Here’s an example of
an event definition for the blind auction smart contract introduced in chapter 5:

event AuctionEnded(address winner, uint highestBid);

134 CHAPTER 6 On-chain and off-chain data

Emitting an event involves calling it by its name and specifying any actual parameter
values. Here’s an example for triggering the AuctionEnded event:

emit AuctionEnded(highestBidder, highestBid);

You can also define events without any parameters by specifying them for different
phases of the blind auction (here, Bidding and Reveal):

event BiddingStarted():
event RevealStarted();

The emit call triggers an event:

emit BiddingStarted();
emit RevealStarted();

All these examples look simple enough: define an event and then call (emit or trigger)
it. Now let’s see how you use these concepts and access a triggered event to notify users of
what’s happening in your application. We’ll reuse the blind auction use case from chapter
5, but with the significant addition of events and related modifications to the code.

6.2.2 Blind auction with events

Online auctions and decentralized marketplaces are ideal use cases for blockchain.
The blind auction introduced in chapter 5 has four phases: Init, Bidding, Reveal,
and Done (auction ended). Wouldn’t it be nice if you could notify users at the begin-
ning of the Bidding and Reveal phases so that they were ready to act (bid or reveal)
and didn’t miss a deadline during any of the blind auction phases? In this chapter,
you’ll add three events: AuctionEnded, BiddingStarted, and RevealStarted.

 Why are we discussing events in the context of on-chain data? As shown in figure 6.2,
events are logged in the block’s receipt tree, so events are good examples of on-chain
data. Event logs can be used for near-real-time responses, as in the blind auction use
case, and also for offline indexing, querying, searching, and analytics of on-chain data.
Events (when triggered) create logs that can be indexed and searched by topic. The
topics in this case are the event name itself and the individual parameters. This type of
fine-grained access is useful for the analysis of a blockchain’s historical data.

 There are many ways to access emitted events, including using listeners (the push
method) and using receipt logs (the pull method). In this example, we’ll use the latter
approach to illustrate the use of transaction receipts—another element of on-chain
data. Let’s redesign the blind auction contract diagram, which has a new element. The
contract diagram, shown in figure 6.3, includes

 Data type (struct) definitions and data declarations
 Event definitions (the new section)
 Modifier headers
 Function headers

135Blind auction use case

The design of the blind auction smart contract now features three events:

 AuctionEnded to announce the end of the auction
 BiddingStarted to announce the Bidding phase of the auction
 RevealStarted to announce the Reveal phase of the auction

Let’s look at the smart contract code with the addition of these events and their trig-
gers. The entire code (BlindAuction.sol) with events is available in the codebase for
this chapter. You can download it into Remix to follow along with the discussion; the
following listing shows only the parts that are relevant to events.

pragma solidity >=0.4.22 <=0.6.0;
contract BlindAuction {
 // Data types
 ...
 // Enum-uint mapping:
 // Init - 0; Bidding - 1; Reveal - 2; Done – 3
 enum Phase {Init, Bidding, Reveal, Done}
 …
 Phase public currentPhase = Phase.Init;

// Events
 event AuctionEnded(address winner, uint highestBid);
 event BiddingStarted();
 event RevealStarted ();

Listing 6.1 Blind auction with events (BlindAuction.sol)

BlindAuction

address beneficiary

struct bid {bytes32 blindedBId; uint deposit}

mapping (address=>bid)

mapping (address=>int) depositReturn;

address highestBidder

int highestBid

event AuctionEnded()

event BiddingStarted()

event RevealStarted()

modifier onlyBeneficiary

modifier validPhase

constructor()

advancePhase()

bid(blindBid) payable

reveal(bidValue, secret)

placeBid() internal

auctionEnd()

withdraw()

Data types
and data definitions

Event defintions

Modifier definitions

Function defintions

Advance phase function

Figure 6.3 BlindAuction
contract diagram with event
definitions included

Phases will be set only by
the beneficiary (auctioneer).

Definition
of events

136 CHAPTER 6 On-chain and off-chain data

 // Modifiers
 modifier validPhase(Phase phase) { ... }

 modifier onlyBeneficiary() { ... }

 constructor() public {
 beneficiary = msg.sender;
 }

 function advancePhase() public onlyBeneficiary {
 // If already in Done phase, reset to Init phase
 if (currentPhase == Phase.Done) {
 currentPhase = Phase.Init;
 } else {
 // Else, increment the phase
 // Conversion to uint needed as enums are internally uints
 uint nextPhase = uint(currentPhase) + 1;
 currentPhase = Phase(nextPhase);
 }

 if (currentPhase == Phase.Reveal) emit RevealStarted();
 if (currentPhase == Phase.Bidding) emit BiddingStarted();
 }

 function bid(bytes32 blindBid) public payable validPhase(Phase.Bidding)
 { ... }

 function reveal(uint value, bytes32 secret) public
 validPhase(Phase.Reveal) { ... }

 function placeBid(address bidder, uint value) internal returns
 (bool success) {
 ... }

 function withdraw() public {
 ... }

 function auctionEnd() public validPhase(Phase.Done) {
 beneficiary.transfer(highestBid);
 emit AuctionEnded(highestBidder, highestBid);
 }}

ADVANCEPHASE FUNCTION

A significant addition to the blind auction code is the function advancePhase(), which
replaces a version of changeState() function that appeared in chapter 5. In this earlier
version, repeated here for comparison, the beneficiary sets the state of the auction:

function changeState(Phase x) public onlyBeneficiary {
 if (x < state) revert();
 state = x;
 }

The changeState() function as written here looks fine and will work well as long as
the beneficiary explicitly and linearly advances the state value. It’s appropriate for a
traditional non-blockchain system in which you may redeploy the code from one

Phases will be set only
by the beneficiary
(auctioneer).

Emit appropriate event

Internal function
can be called
only from the
contract itself

Send the highest bid
to the beneficiary;
announce the end of
the auction.

137Blind auction use case

auction to the next and as many times as you want. But a smart contract deployed with
changeState() would be good for only a single use in a blockchain environment
because the immutability requirement of the blockchain means that a smart contract,
once deployed, cannot be overwritten! This limitation is significant.

 Now consider the advancePhase() function from listing 6.1, which addresses this
limitation of the earlier version by circularly advancing the state: Init, Bidding,
Reveal, Done, and back to Init, ready for the next auction. It also emits the events
BiddingStarted and RevealStarted.

NOTE You must be aware of the immutable nature of smart contracts (and
on-chain data) when you are designing blockchain-based systems. It’s import-
ant to think of smart contracts as long-running programs and to make provi-
sions for repeat runs through proper use of states.

EVENT LOG ON-CHAIN DATA

Now you can upload the smart contract to the Remix IDE and check the events in
operation. Compile, run, and deploy BlindAuction.sol; then take a look at the Tx
recorded in the console window. The part of the recording called logs generated in
response to the execution of the advancePhase function of the smart contract is
shown in figure 6.4.

 This action advances the phase from Init to Bidding and triggers an event
announcing the Bidding phase, which results in the console output shown in figure 6.4.
In this case, the phase is changed to Bidding, and an event BiddingStarted is emitted.
When the Tx is confirmed, the event is logged in the block header as on-chain data. You
can check this out in the Remix console when you click the advancePhase button. The
numbers shown may be different, but the event will be BiddingStarted.

 Let’s analyze the on-chain log in figure 6.4. You can see the following information:

 The "from" address, identifying the account that deployed the smart contract.
 The "topic", a hexadecimal representation of the signature (header) of the

function called (in this case, advancePhase()).
 The "event" triggered (BiddingStarted) and its parameters. In this case, the

event has no parameters, as indicated by the length value of 0.

BiddingStarted event emitted
after advancePhase

Figure 6.4 On-chain log for
BiddingStarted event

138 CHAPTER 6 On-chain and off-chain data

This event log can be extracted from the receipt stored in the block corresponding to the
Tx that deployed the contract. You can run through the phase changes to observe the
events triggered in the console. These logs generated and stored on the blockchain ledger
are indeed great information for postanalytics. Can you imagine some of their uses?

 Figure 6.5 shows the BlindAuction contract in the Remix UI. In Remix, with the
first account address selected (assuming it to be the beneficiary), click advancePhase,
check the console logs to see the event that was triggered, and click advancePhase a
few more times to complete the cycle from Init back to the Init phase. You should
see the logs of all the events triggered after the Txs are confirmed.

NOTE Figure 6.5 depicts the latest version of Remix at the time of this writing.
You must be aware that these tools keep changing their layout and color
schemes to improve user experience. But the underlying features are mostly
the same: edit, compile, deploy, and run interactions.

Let’s now see how to consume (or use) these triggered events to notify users of phase
changes through the blind auction web UI. You’ll use the Truffle IDE to build the con-
tract module, auction-contract, and Node Package Manager (npm) and Node.js for
the auction-app module.

6.2.3 Testing with the web UI

A simple web UI illustrates the operations of the blind auction contract. I’ll provide
the instructions for deploying the Dapp and interacting with this UI. Our goal in this

Function to advance
auction phase

Bid function defined as payable
can receive ether value

Current phase is 2
or Bidding phase

Figure 6.5 Remix UI
showing the BlindAuction
contract with updated
advancePhase() function

139Blind auction use case

section is to access on-chain data to support the blind auction. In particular, you’ll
learn how to access the receipt logs. In the blind auction example, the code for access-
ing event logs is located in app.js, which serves as the glue code between the smart
contract and the web UI.

 Designing the web UI is a challenge. What goes in there? What are the functions of
each role? Here is a solution to that challenge. Remix creates a UI that shows you the
functionality needed. You can use this UI as a guideline for designing the contents of
your web UI. Figure 6.6 shows a version of the web UI for the blind auction Dapp and

Reveal function
Bid function

Show winning bid function

Advance phase function

Figure 6.6 Web UI for blind auction
Dapp compared with Remix UI

140 CHAPTER 6 On-chain and off-chain data

the corresponding Remix UI. This web UI is a combination of the beneficiary’s inter-
face and the bidder’s interface. Examine figure 6.6 to see how the buttons (controls)
for the blind auction in the Remix IDE have been rendered (mapped) as buttons and
controls in the web UI. The code of this chapter is based on this UI but provides a sep-
arate interface for the beneficiary and bidders.

 The Bid, Reveal, and Advance Phase buttons map one-to-one with the Remix con-
trols (and smart contract functions). In the web UI shown in figure 6.6, I have not
implemented an explicit auction-end button. Recall that the advancePhase() func-
tion cycles through all the phases: when you advance it from the last phase (Done), it
returns to Init, setting the stage for the next item to be auctioned. Adding those or
other features and functions to this basic blockchain-based auction application is left
as an exercise for the reader.

 Now let’s deploy the blind auction contract and run some tests to demonstrate the
events and notifications. Some of these functions are further developed in chapter 8.

COMPILING AND DEPLOYING USING TRUFFLE

Download the codebase for the next version of BlindAuctionV2-Dapp.zip, which
includes improvements on the version from chapter 5. The following steps reflect
the standard pattern that you’ll follow for compiling and deploying throughout this
book. By now, you should be somewhat familiar with these steps for processing Dapp
code with Truffle, but the instructions are repeated here in short form to reinforce
your learning:

1 Start the test chain. Start the Ganache blockchain by clicking the Ganache icon
on your development machine and clicking Quickstart.

2 Compile and deploy the smart contract(s). The base directory is named BlindAuctionV2-
Dapp, and it has two subdirectories: blindauction-contract and blindauction-app.
From the base directory, issue the following commands to deploy all the contracts
in the contracts directory (truffle-config.js configures the local deployment on a
Ganache blockchain):

cd blindauction-contract
truffle migrate --reset

You should see messages confirming the clean deployment of the contracts.

3 Start the webserver (Node.js) and the web component of the Dapp. Migrate to the
blindauction-app directory from the base directory, BlindAuctionV2-Dapp;
install the required node modules by the command npm install; and then start
the Node.js server with the application’s start script:

cd ../blindauction-app
npm install
npm start

You should see the server starting and listening on localhost:3000.

141Blind auction use case

4 Start a web browser (Chrome) with the MetaMask plugin installed. Point the browser
to localhost:3000. Using your MetaMask password, make sure that MetaMask is
linked to the Ganache test chain. Restore accounts, using the mnemonic or the
12-word seed phrase of the Ganache test chain.

Now you can interact with the blind auction smart contract through the web UI
instead of the Remix IDE interface.

TESTING THE BLIND AUCTION USING THE WEB UI
Restart your browser, and make sure that MetaMask has connected to Ganache on the
localhost. If MetaMask is already installed as a plugin and connected to the Ganache
chain, make sure that Account 1, Account 2, and Account 3 are visible. Be sure to reset
the nonce of all three accounts before you begin testing. The nonce maintains a running
count of the Txs issued from an account; it’s persistent and may be stored from your ear-
lier test runs, so it’s good practice to clear it before you begin testing a new project.

 To reset nonce, with Account 1 selected, click the account icon (the ball to the right
of the MetaMask icon); select Settings, Advanced option; and scroll down and click
Reset Account to reset the nonce of that account. Repeat this process for the other two
accounts. You need only these three accounts for minimal testing. In this test plan,
Account 1 is the beneficiary or auctioneer, and the other two accounts are the bidders.

 For the first test, click the MetaMask icon, and choose Account 1 from the list that
opens. Then click Advance Phase at the bottom of the web UI. Keep clicking the but-
ton until you complete a full cycle from Init back to Init. You’ll see notifications for
the various phases, including Bidding and Reveal, in the top-left corner of the UI, as
shown in figure 6.7. The notifications represent the logs in the Tx receipts that are

Bidding phase

Reveal phase

Auction ended phase

Winning bid details
notification

Event logs and notifications

Figure 6.7 Event notifications in the web UI and MetaMask confirmation on the right

142 CHAPTER 6 On-chain and off-chain data

recorded in the block. In section 6.2.4, you’ll see code snippets in app.js that access
these event logs to notify users of the phase changes.

 MetaMask requires confirmation from the user to go ahead with the transactions,
as shown in figure 6.8. This process is similar to your accepting your credit card trans-
action at a checkout counter. Every time you click a smart contract operation in the
UI, MetaMask opens a drop-down list with Tx sender and receiver details, and ether
cost. This window also has two buttons: Reject and Confirm. Confirm proceeds with
the Tx, and Reject stops them from executing. If the MetaMask drop-down box shown
in figure 6.8 doesn’t open automatically when confirmation is required, a little num-
ber appears on the MetaMask icon; click the icon to open the drop-down list. Click
the Confirm button to go ahead with Tx execution and recording, or click Reject to
cancel the transactions. Don’t hesitate to click Reject if you made some mistake in
your input or forgot something. The result of rejecting is that the Tx will be stopped
and will not be recorded on the blockchain. It is good to have this control.

 Now you’re ready to do regular testing of the blind auction process. Recall the
steps from chapter 5:

 During the Bidding phase, each bidder presents their blind bid and deposit.
 During the Reveal phase, each bidder reveals their bid and the secret one-time

password (OTP) used for encrypting (Keccak hashing) or blinding (hiding)
the bid.

Smart contract
account number

Reject or confirm Tx

Figure 6.8 MetaMask drop-down
box with Tx details, Reject button,
and Confirm button

143Blind auction use case

When the beneficiary ends the auction, the address of the highest bidder and the
highest bid computed are emitted as parameters to the AuctionEnded event. When
you click the Show Winning Bid button, your app.js code accesses these logs and dis-
plays them in the UI.

 The test sequence from chapter 5 is repeated here for your convenience, so you
can follow along and try it yourself. You can make the following assumptions for test-
ing purposes:

1 Account 1 (in MetaMask) will be the beneficiary, which is the only user that can
advance (control) the phase of the auction. You can also assume that the smart
contract was deployed from Account 1.

2 Account 2 and Account 3 will be the two bidders. (Only two are needed for test-
ing purposes.)

3 Account 2 will place a blind bid of 20 with a deposit of 50 ether, and Account 3
will place a blind bid of 30 with a deposit of 50 ether.

4 Each blind bid is computed by the Keccak secure hash function (the details of
which are explained in chapter 5) Keccak256(abi.encodedPacked(v, OTP),
where v=20 for Account 2, v=30 for Account 3, and OTP=0x426526 (the 0x indi-
cates hexadecimal notation).

Here are the values you’ll use for placing a blind bid. You can always com-
pute them by using other methods, but for now, copy and use these:

0xf33027072471274d489ff841d4ea9e7e959a95c4d57d5f4f9c8541d474cb817a

0xfaa88b88830698a2f37dd0fa4acbc258e126bc785f1407ba9824f408a905d784

Here is a minimal test plan:

1 Bidding phase.
Use the blindedBid values in the preceding list. From Account 2 in MetaMask,

copy the first blindedBid value (for v=20), set the deposit as 50 ether, set param-
eters for the bid() function, and click the Bid button. Repeat the process for
Account 3, but with the second blindedBid value (for v=30). Now the Bidding
phase is over.

2 Reveal phase.
From Account 1, the beneficiary account, advance to the Reveal phase by

clicking AdvancePhase. From Account 2, enter 20, 0x426526 as parameters for
the reveal() function, and click the Reveal button. Repeat this process for
Account 3, but with 30, 0x426526 as parameters. The Reveal phase is over.

3 Done phase.
From Account 1, the beneficiary account, advance the phase by clicking the

Advance Phase button.

4 Announcing the winner.
Click the Show Winning Bid button to find out the identity of the highest

bidder and the highest bid value.

144 CHAPTER 6 On-chain and off-chain data

You can withdraw from the nonwinner bidder by choosing Account 2 and
clicking the Withdraw button.

Then you can move back to the beneficiary and close the auction by clicking
the Close Auction button.

You’ve completed a simple test of the blind auction. To explore the code further, you
can try using other values and more accounts. This simple testing is all right for proto-
typing. For more thorough testing, you need automated test scripts. In chapter 10,
you’ll learn about automatic testing with test scripts.

6.2.4 Accessing on-chain data using the web3 API

There are two significant differences between the testing you’ve done here and what
you did in chapter 5: in this chapter, you have a web UI, and you are accessing data
logged for the events emitted. You explored the web UI in section 6.2.3. How about
the event log data? How is it delivered as a notification to the user (figure 6.7)? Figure
6.9 shows the steps involved in processing on-chain logged events.

Let’s explore the app.js code for the new version of the blind auction (BlindAuc-
tionV2-Dapp) and identify the snippets that access the logged events and notify the
users. Of them, the first one shows how you access an event without parameters, and
the second shows how you access an event with parameters. These examples show how
you write code accessing event logs.

 The following snippet is inside the handlePhase() function of app.js. The success
of the function call execution is recorded in the blockchain receipt data structure and
is checked by verifying that status == 1. If this statement is true, you can extract the
indexed logs of the event(s) emitted as logs[0], logs[1], and so on. This snippet
shows how the BiddingStarted and RevealStarted events are accessed and how the
user is notified of these events. These two events do not have any parameters:

if(parseInt(result.receipt.status) == 1){
 if(result.logs.length > 0){
 App.showNotification(result.logs[0].event);
 }

The next snippet is inside the handleWinner() function of app.js. It executes the
auctionEnd() function, which in turn triggers the AuctionEnded event with two
parameters: winner and highestBid. These parameters are logged as on-chain data
and returned as results that are extracted by the following code. (The winner argument
of logs[0] and highestBid argument of logs[0] are extracted for display in the UI.)

Events emitted by
smart contract

phases

Captured as logs in
block header

app.js uses web3
API to access
event logs.

Events displayed as
notification on UI

Figure 6.9 Processing of event logs using web3 API

145Off-chain data: External data sources

Also note the toNumber() utility function that converts the highestBid argument (a
256-bit number) to a smaller 64-bit number:

return bidInstance.auctionEnd();
 }).then(function(res){
 var winner = res.logs[0].args.winner;
 var highestBid = res.logs[0].args.highestBid.toNumber();

These two snippets demonstrate how to access the event logs in transaction receipts
and use them in your off-chain applications. This on-chain data is useful for real-time
notifications, as illustrated in this demo, as well as for other purposes. The event logs
are stored and indexed, and they can be extracted for offline data analytics based on
topics and logs of immutable blockchain data.

6.3 Off-chain data: External data sources
Off-chain data is stored on a variety of data sources, some of which are shown in figure
6.10. A significant difference from on-chain data is that the types and uses of off-chain
data are not determined by the blockchain protocol; this data is used by the non-
blockchain part of the larger system. Off-chain data can be anything from the output
of a medical device to data in cloud storage. The types and formats of data sources are
limitless and application-dependent. A typical scenario, however, is a regular database

Local and remote
filesystems

SQL and NoSQL
databases

Decentralized
filesystem (IPFS)

Cloud data
sources (such as

Amazon S3
and GCS)

Streaming data
accessed through

APIs

IoT devices and
sensor data

Space data from
telescopes

Assorted other
data sources

Off-chain data

Specialized streaming dataRegular filesystem

DatabasesInterplanetary
filesystem

No specific limit:
multisource

Figure 6.10 Different types of off-chain data

146 CHAPTER 6 On-chain and off-chain data

that works in tandem with the blockchain trust layer that is needed in a decentralized
system of unknown peers.

 Determining what goes on-chain and what stays off-chain is a significant design
decision that makes blockchain application development different from traditional
application development. In a traditional application, there is no on-chain data
because there is no blockchain. The blockchain is a whole new concrete addition to
enable trust. As we’ve seen, in a blockchain application, the data that will be recorded
on-chain includes valid transactions, state changes, receipt values from Tx execution,
logs of events emitted, and a few related details.

 Do not define a traditional database in a smart contract. If you do, there will be
multiple replicated databases, one in each node. Also, do not try to port a database of
a centralized system into a smart contract. You don’t explicitly say “Record this” and
“Record that.” The blockchain infrastructure in the background records most of the
on-chain data.

 So how should you store on-chain data? Because smart contracts facilitate on-chain
recording, you’ll design your contracts with only the functions and data needed for
recording a hint of what happened off-chain.

DESIGN PRINCIPLE 8: Design smart contracts with only the functions and data
needed for enforcing rules, compliance, regulation, provenance, logs for
real-time notifications, and timestamped footprints and messages about
offline operations.

You can think of the smart contract as being a rules engine, an enforcer of rules, and a
guardian of related data and messages. If you want to prove that you bought a Ferrari,
you don’t upload all your photographs of the car to the blockchain (via smart con-
tract); instead, you store the hash of the title or index of your (off-chain) Ferrari
photo album. People can use this on-chain hash to locate and access your collection of
Ferrari photos off-chain.

 To illustrate the use of off-chain and blockchain-based on-chain data, let’s revisit
the airline system consortium (ASK) use case from chapter 2 and complete it with a
simple web UI, an off-chain data store, and an updated smart contract. The smart con-
tract design in this implementation also illustrates the design guideline for on-chain
data definition.

6.4 ASK airline system
ASK is a decentralized airline consortium creating a marketplace for unused seats on
airlines. You were introduced to ASK in chapter 2, with a detailed design description,
but the solution was not fully developed because it required you to know more block-
chain concepts. Now you are ready to tackle the ASK development task. ASK is not a
new idea, but this novel implementation offers an opportunity for newer business
models involving the recording capabilities of the blockchain.

147ASK airline system

 ASK illustrates many blockchain concepts, including

 Coexistence of a traditional centralized system and a decentralized blockchain
system as parts of a larger system (a concept discussed in chapter 1)

 Off-chain and on-chain data (the topic of this chapter)
 Use of cryptocurrency (tokens) while keeping your fiat currency (say, dollars)

for regular operations (covered in chapter 9)
 End-to-end Dapp development using the Truffle IDE (introduced in chapters 4

and 5)

6.4.1 ASK concept

If you’d like a refresher on the ASK use case, now would be a good time to flip back to
chapter 2. I’ll give you more details about it here. At the airport, you see display boards
for flights departing from and arriving at that location. No matter what airlines are run-
ning them, central display boards consolidate details on all arriving and departing
flights. Following the same theme, you can picture one more display board: the ASK
display that shows the available seats on flights departing from that airport. Figure 6.11
shows examples of the three displays: arrivals, departures, and available seats (the ASK
display). The ASK display is a new display of available seats that is not currently avail-
able at the airports. It is a new concept introduced by the ASK application.

ASK display (Available Seats)

FlightID Airline FromCity ToCity DepTime SeatsAvail

4 AirlineC BUF NYC 1:00 AM 7

5 AirlineC BUF NYC 9:00 AM 8

1 AirlineA BUF NYC 6:00 AM 8

2 AirlineA BUF NYC 10:00 AM 6

3 AirlineB BUF NYC 6:00 PM 10

Available seats

Departures

Terminal Flight Destination Time Gate Status

1 12 DepartedYV6169 Washington 10:30

1 22 DepartedG76294 Detroit 10:28

1 5 On TimeYX4531 Philadelphia 10:42

1 25 On TimeDL1672 Atlanta 11:04

1 16 On TimeWN2428 Baltimore 11:05

Arrivals

Terminal Flight Destination Time Gate Status

1 25 LandedDL1672 Atlanta 10:20

1 16 LandedWN2296 Baltimore 10:30

1 6 On TimeMQ3352 Chicago 10:37

1 10 DelayedUA680 Chicago 10:24

1 23 On TimeOO3724 Detroit 11:22

Departures display Arrivals display

Figure 6.11 Flight departures, arrivals, and available-seats displays

148 CHAPTER 6 On-chain and off-chain data

If you want to switch to a different flight, you can check the ASK display to see
whether a seat that meets your needs is available. If so, you can approach the airline
on which you hold your current seat (fromAirline) and ask it to facilitate the change,
specifying the airline to which you would like to switch (toAirline). Agents of the air-
lines process your request by using the ASK UI, assign the seat to you, and message
you about the status of your transfer. Payment is settled between the airlines via the
smart contract based on previously deposited amounts and any business contracts
established between them.

 Airlines interested in the ASK model join (register with) the ASK consortium by pay-
ing a deposit and applying to become ASK members. ASK member airlines are respon-
sible for updating information about available seats on the ASK display board (off-chain
data). ASK is designed for airlines that are not in preexisting partnerships, such as code-
sharing alliances. If a customer who holds a seat wants to change to a different seat on
a flight run by the same airline or a partner airline, the problem is not a blockchain prob-
lem; it can be solved within the airlines’ conventional systems and databases.

 The ASK display board shown in figure 6.12 has a list of available seats on flights
operated by various airlines. The details include flight number, airline name, from city
(origin), to city (destination), departure time, and number of seats available. Because
the display will show only flights originating from the airport (city) where it is dis-
played, the origin city is redundant, but that’s all right; we’ll keep it there to establish
the context. You might consider other business operations after you’ve mastered the
concepts of blockchain, including displaying information on flights originating in
other cities (airports) and using other request models (such as one-to-many or broad-
cast instead of one-to-one). These operations could be implemented as a higher-level
application using ASK as a blockchain interfacing layer.

 Now that you know what information is displayed, let’s explore a simple scenario to
demonstrate the typical operation of the ASK Dapp. Suppose that a customer who
holds a seat on a flight operated by AirlineA finds and wants to change to a seat on a
flight operated by AirlineB leaving at 1 p.m. (flightID 5 on the ASK display shown in

FlightID Airline FromCity ToCity DepTime SeatsAvail

1 AirlineA BUF NYC 6.00 AM 8

2 AirlineA BUF NYC 10.00 AM 6

3 AirlineA BUF NYC 6.00 PM 7

4 AirlineB BUF NYC

5 AirlineB BUF NYC

6 AirlineB BUF NYC 5.00 AM 2

1.00 PM 4

7.00 AM 10

Figure 6.12 ASK available seats display

149ASK airline system

figure 6.12). The customer makes a request to AirlineA to change their seat. An agent
at AirlineA issues a request (ASKRequest()) to AirlineB on the customer’s behalf to
confirm that the seat is available. An agent at AirlineB examines its system and
responds (ASKResponse()). Assuming that the response is a success response (the seat
is available), AirlineA initiates payment to AirlineB, and the ASK display is updated to
show the number of seats now left on the flight with flightID 5. Other updates related
to the seat vacated by this customer on the original flight also happen offline, but they
are not shown here. Either of the airlines involved may message the customer about the
change, and all the ensuing operations are carried out offline. Most of the operations
are offline except for proof that the request was issued, the transfer took place (Tx
receipts), and payment was settled. These actions are captured in the sequence dia-
gram in figure 6.13. (Appendix A shows details on this type of UML diagram.) Follow
the operations in the sequence represented by the numbers 1 through 9.

 Let’s study this sequence diagram. The timeline is from top to bottom; the vertical
lines are timelines. The sequence of operations is from top to bottom of the sequence
diagram. The operations are numbered in this diagram to follow along with the
sequence numbers; this numbering is not part of a standard sequence diagram. In the

Airlines
smart contract fromAirline(s) toAirline(s)

ASK consortium
chairperson

constructor()

ASKRequest()

Deploy
contract

 Settle payment
with deposit

Self-register Self-register

ASKResponse()

settlePayment()

register()

register()

unregister(airline)

Off-chain
ASK display

offchain- updateSeats()

offchain-request()

offchain-response()

Off-chain operation

On-chain operation

All these Txs are recorded on blockchain.

1

2

3

4
5

6

7

8

9 Time progress

Figure 6.13 ASK sequence diagram

150 CHAPTER 6 On-chain and off-chain data

top row are notes operations. The second row shows the main users (actors in the use
case diagram): the ASK chairperson, the Airlines smart contract (Airlines.sol), the two
airlines (fromAirline and toAirline) involved in the seat change (in this particular
scenario), and the off-chain display. The airlines go about their regular business. They
send only the information about the seat change to the smart contract. Only transac-
tions related to the seat change are recorded on the blockchain, via the invocation of
smart contract functions. All the Txs recorded on the blockchain are shown within
the ellipse in figure 6.13. Also, observe the off-chain operations indicated by dotted
arrows. These operations include the request and response processing with the air-
lines’ own databases and seat availability notifications to the ASK display board. Take a
few minutes to review the sequence of exchanges in figure 6.13 before continuing
with your exploration.

DESIGN PRINCIPLE 9: Use a UML sequence diagram to represent the
sequence(s) in which functions within a smart contract may (and can) be
called. The sequence diagram captures the dynamic operations of a system.

6.4.2 Airlines smart contract

The updated Airlines smart contract (Airlines.sol) is shown in listing 6.2. You’ll find a
copy of this listing in the codebase for this chapter; you can copy it into the Remix
IDE to do a bit of exploration. The code illustrates how you can define state variables
as an on-chain record representing parameters of operations happening off-chain.
You do this by defining a struct data type for recording the state changes effected by
the ASKRequest() and ASKResponse() functions. Observe that the fields in the
structs reqStruc and respStruc match one-to-one the parameters of the functions
ASKRequest() and ASKResponse(), respectively. These data structures facilitate the
recording of information about a request and a response and their parameters. These
parameters get assigned to smart contract variables, which in turn enables them to be
recorded in the state tree. Also note the use of the Solidity mapping feature, which
allows you to build on-chain data for the status of membership and other operations
of the ASK system.

pragma solidity >=0.4.22 <=0.6.0;

 contract Airlines {

 address chairperson;

 struct reqStruc{
 uint reqID;
 uint fID;
 uint numSeats;
 uint passengerID;
 address toAirline;

Listing 6.2 Updated Airlines smart contract (Airlines.sol)

Data type for request
parameters

151ASK airline system

 }

 struct respStruc{
 uint reqID;
 bool status;
 address fromAirline;
 }

 mapping (address=>uint) public escrow;
 mapping (address=>uint) membership;
 mapping (address=>reqStruc) reqs;
 mapping (address=>respStruc) reps;
 mapping (address=>uint) settledReqID;

 //modifier or rules
 modifier onlyChairperson {
 require(msg.sender==chairperson);
 _;
 }
 modifier onlyMember {
 require(membership[msg.sender]==1);
 _;
 }

 constructor () public payable {

 chairperson=msg.sender;
 membership[msg.sender] = 1; // automatically registered
 escrow[msg.sender] = msg.value;
 }

 function register () public payable{

 address AirlineA = msg.sender;
 membership[AirlineA] = 1;
 escrow[AirlineA] = msg.value;
 }

 function unregister (address payable AirlineZ) onlyChairperson public {
 membership[AirlineZ]=0;
 //return escrow to leaving airline:other conditions may be verified
 AirlineZ.transfer(escrow[AirlineZ]);
 escrow[AirlineZ] = 0;
 }

 function ASKrequest (uint reqID, uint flightID, uint numSeats,
 uint custID, address toAirline) onlyMember public{
 /*if(membership[toAirline]!=1){
 revert();} */
 require(membership[toAirline] == 1);
 reqs[msg.sender] = reqStruc(reqID, flightID, numSeats,
 custID, toAirline);

 }

Data type for response
parameters

On-chain
data

Mapping account address
to on-chain data

Member airline could
be consortium chair

Parameters of ASKRequest() and ASKResponse()
are transferred to state on-chain data

152 CHAPTER 6 On-chain and off-chain data

 function ASKresponse (uint reqID, bool success, address fromAirline)
 onlyMember public{

 if(membership[fromAirline]!=1){
 revert();
 }

 reps[msg.sender].status=success;
 reps[msg.sender].fromAirline = fromAirline;
 reps[msg.sender].reqID = reqID;
 }

 function settlePayment (uint reqID, address payable toAirline,
 uint numSeats) onlyMember payable public{
 //before calling this, it will update ASK view table
 address fromAirline = msg.sender;

 //this is the consortium account transfer you want to do
 //assume the cost of 1 ETH for each seat
 // computations are in wei

 escrow[toAirline] = escrow[toAirline] +
 numSeats*1000000000000000000;
 escrow[fromAirline] = escrow[fromAirline] –
 numSeats*1000000000000000000;

 settledReqID[fromAirline] = reqID;
 }

 function replenishEscrow() payable public
 {
 escrow[msg.sender] = escrow[msg.sender] + msg.value;
 }
}

6.4.3 ASK on-chain data

The on-chain data in this ASK Dapp consists of the following:

 The transactions for execution of the functions constructor(), register(),
unregister(), ASKRequest(), ASKResponse(), settlePayment(), and replen-
ishEscrow(). These transaction details are stored in a tree with the tree root
(hash) in the block header, as described in section 6.1.

 The state changes of the variables in the smart contract brought about by the
parameters of the Txs. The state values are stored in a tree with the tree root in
the block header; the values of tree nodes change from one block to the next,
depending on the Txs.

Unlike the blind auction Dapp, the ASK Dapp does not store any explicit return val-
ues or event logs as on-chain data because the ASK functions do not return any values
and no events are used. The transaction receipts do include the status of function exe-
cution (failure or success). Recall from section 6.1 that there is a receipt for every
transaction (1:1).

Parameters of ASKRequest() and
ASKResponse() are transferred
to state on-chain data

Request ID is stored in the
on-chain state tree as proof
of payment

153ASK airline system

6.4.4 ASK off-chain data
Each airline may have many enterprise databases of its own, protected by firewalls. The
airlines keep these databases as safe as possible and use them as appropriate for their rou-
tine operations. The airlines periodically update a display board showing available seats.
The airport or the ASK consortium maintains this display, which is not a centralized data-
base but an integrated view of the seats available on flights operated by the consortium’s
member airlines. In the Dapp codebase provided, this off-chain data on available seats
is stored in a simple JSON file. This file format (instead of a database) is used for sim-
plicity and to preserve this book’s focus on the blockchain aspects of Dapp development.
If you prefer, you can always create a MySQL or NoSQL database to store the off-chain
data. The data schema, along with some sample data, is shown in figure 6.14.

6.4.5 ASK Dapp development process
You’ve already completed significant parts of the end-to-end development of the ASK
Dapp. Figure 6.15 provides an overview of the standard development environment,
the steps involved, and the tools you’ve been introduced to that support Dapp devel-
opment. The steps in the development process shown in figure 6.15 are

1 Analyze the problem and its requirements. The problem definition always
comes before the solution.

2 Design the solution, using UML contract diagrams.
3 Develop and test the smart contract, using the Remix IDE.
4 Develop the <Dapp>-contract module, using the Truffle IDE.
5 Deploy the smart contract on the Ganache test chain.
6 Develop the <Dapp>-app module, using Node.js and related software modules.
7 Design the web UI and the web component of the application.
8 Test the Dapp you’ve developed via the web UI, using a browser with the

MetaMask plugin enabled. This step connects the web UI to the contracts
deployed on the blockchain (in this case, Ganache).

FlightID Airline FromCity ToCity DepTime SeatsAvail

1 AirlineA BUF NYC 6.00 AM 8

2 AirlineA BUF NYC 10.00 AM 6

3 AirlineA BUF NYC 6.00 PM 7

4 AirlineB BUF NYC

5 AirlineB BUF NYC

6 AirlineB BUF NYC 5.00 AM 2

1.00 PM 4

7.00 AM 10

Figure 6.14 ASK’s seat availability off-chain data

154 CHAPTER 6 On-chain and off-chain data

You can use the development process and tools in figure 6.15 as a roadmap for all
your local Dapp development. With this process in mind, let’s explore the ASK Dapp
(available in the codebase for this chapter so you can download it and follow along).
You can start by exploring the Airlines smart contract in the Remix IDE and then
move to the Truffle IDE for further deploying the Dapp. Following the standard Dapp
directory structure that I’ve suggested in earlier chapters, the ASK Dapp has two main
components: ASK-contract and ASK-app. ASK-contract houses the smart contract in
listing 6.2, and ASK-app houses the web part of the Dapp. In a production environ-
ment, these two components may be developed by two different teams. A production
environment will also require more rigorous and comprehensive automated test
scripts, which you’ll explore in chapter 10.

6.4.6 ASK web user interface

A significant part of the ASK-app module is web UI. There are two components: the off-
chain data display for the available seats on flights and the interface for airline agent
interaction. An important detail you have to recognize is that the ASK system uses the

Figure 6.15 Dapp development environment, steps, and tools

contractName

+ field: type

+ method(type): type

Problem
statement and
requirements

1. Problem first: always start with a clear problem
statement and requirements; analyze it.

2. Design contracts using
UML diagrams.

3. Code smart contract and
prototype it in Remix IDE.

4. Build smart contract
<Dapp>-contract module
using Truffle IDE.

6. Develop the <Dapp>-app
module using Node.js.

7. Develop web UI using standard
software frameworks (HTML, CSS. JS).

5. Deploy smart contracts
on Ganache.

8. Test deployed Dapp using interactions and
MetaMask-enabled browser (Chrome).

155ASK airline system

blockchain to record valid Txs for ASK, but all the computations and decisions for the
Txs are carried out by off-chain systems, as reflected in the design of web UI. Part of the
design of this UI is shown in figure 6.16.

Here is a simple technique for designing a web UI for a smart contract. Map the smart
contract functions one-to-one with UI buttons. The functions in listing 6.2 (regis-
ter(), unregister(), ASKRequest(), ASKResponse(), settlePayment(), and replen-
ish()(escrow), all with their parameters) are represented in the UI. This layout of the
UI is guided by the Remix IDE’s UI for the smart contract. Do make a note of this
mapping. You don’t have to rethink the UI from scratch, but make use of the UI ele-
ments as represented in the Remix IDE’s left panel. The request identifier reqID in
ASKRequest(), ASKResponse(), and settlePayment() ties together the sequence for a
single request by a user. Keeping track of this sequence is the responsibility of off-
chain code; the blockchain simply records the fact that these reqID-related operations
happened. An application can query the blockchain recording later for all Txs with a
specific reqID, for example. You can observe that this UI is closely aligned with the
ASK’s Remix UI buttons and parameters.

Initiator

ToAirline

Register

AirlineAddress Unregister

AnyAirline

OnlyChair

ReqID FlightID PassengerID NumSeats ASKRequest

ReqID Success ASKResponse

ReqID NumSeats ToAirline SettlePayment

ReplenishAmountAnyAirline

ASK functions

ASK functions

AirlineAddress

FromAirline

FromAirline

Deposit

Function parameters

Figure 6.16 Design of ASK web UI

156 CHAPTER 6 On-chain and off-chain data

6.4.7 Putting it all together

With the ASK code base ASKV2-Dapp.zip, you’ll use the same process as before.
Download, unzip, and get the ASK code ready, and follow along with these steps:

1 Start the test chain. Start the Ganache blockchain by clicking the Ganache icon
on your development machine and clicking Quickstart.

2 Compile and deploy the smart contract(s). The base directory is named ASK-Dapp,
and it has two subdirectories: ASK-contract and ASK-app. From the base direc-
tory, issue the following commands to deploy all the contracts in the contracts
directory:

cd ASK-contract
truffle migrate --reset

You should see messages confirming the clean deployment of the contracts.

3 Start the web server (Node.js) and the web component of the Dapp. Navigate to the ASK-
app directory from the base directory, ASK-Dapp; install the required node
modules; and run the application’s start script:

cd ASK-app
npm install
npm start

4 You should see the server starting and listening on localhost:3000.
5 Start a web browser (Chrome) with the MetaMask plugin installed. Point the browser

to localhost:3000. Make sure that MetaMask is linked to the Ganache block-
chain server, using your password or 12-word seed phrase.

Now you can interact with the ASK Dapp through the web UI. Take time to study the
UI that appears and all its parts.

6.4.8 Interacting with ASK Dapp

Figure 6.17 shows the display board for available seats and also the addresses of
MetaMask Account 1 (the chair), Account 2, and Account 3, which you can use for
testing purposes. In a real scenario, the display board will be elsewhere, and the
addresses will not be shown in the web UI; this combination of displays is included
only for testing purposes. As when you were testing the blind auction Dapp, make sure
that you reset the nonce of all three accounts before you begin testing. Now you’re
ready to test the ASK Dapp.

157ASK airline system

Figure 6.18 shows just the available seats (the left side of the web UI). For each flight
included, it lists the flight number, airline name, origin and destination cities, depar-
ture time, and number of seats available. On the right side of figure 6.18 are the func-
tions for

 Recording the evidence that a request (identified by reqID) was made
 Sending a response to the requests
 Settling the payment for the request

Valid transactions for the functions register(), unregister(), and replenish() are
also recorded on the chain for later analytics.

 Here’s a simple test sequence to test the Dapp:

1 Register. For Account 2, with 50 ether as escrow, click Register. Repeat the same
process for Account 3, clicking Confirm in both cases when the MetaMask win-
dow pops up. Assume that Account 2 is fromAirline, and Account 3 is toAir-
line. Now fromAirline and toAirline are ASK consortium members.

2 Send a request. For Account 2 in MetaMask, fill in these parameter values to
request two seats from row 1 of the ASK display table:

{reqID = 123, flightID = 1, passengerID = 234, numSeats = 2,

➥ <toAirline address>}

ASK available seats display

ASK Account 1 (ASK chair), Account2, Account 3
displayed for testing convenience

ASK airline agent UI

Figure 6.17 Integrated ASK web UI for testing

158 CHAPTER 6 On-chain and off-chain data

For the toAirline address, copy the address of Account 3 provided in the left
panel of the web UI for your convenience, and click ASK Request.

3 Send a response. For Account 3 in MetaMask, fill in these parameter values for the
response:

{reqID = 123, success = true, <fromAirline address>}

For the fromAirline address, copy the address of Account 2 provided in the
left panel of the web UI for your convenience, and click ASK Response.

4 Settle payment. For Account 2, enter {reqId =123, numSeats = 2, <toAirline
address>}, and click Settle Payment. You’ll find that the payment is settled for
two seats, and the table on the left is updated.

Available seats ASK display

ASK functions

Record that
request, response,
and payment
happened for a
specific reqID.

Figure 6.18 ASK available seats display and ASK functions

159Retrospective

5 You’ll also notice the ASK Available seats table on the UI getting updated to
reflect the seats transferred.

6 You can try to unregister() and replenish() for either of the two accounts
registered. If you try these for an unregistered account, the operations should
revert and throw an error because of the modifier onlyMember that checks for
membership.

7 At this point, you can also examine app.js, which serves as the glue between the
web UI and the smart contract. This critical component in the end-to-end
design of a Dapp handles the calls from the UI and directs them to the smart
contract.

You’ve completed a simple positive test. You can explore the ASK Dapp further on
your own to see how it handles reversions and negative tests.

 Finally, you may be wondering about the use of the ASKRequest() and
ASKResponse() operations, which don’t do any computations. They merely store the
parameters to the smart contract variables, creating on-chain records or the state of
what transpired off-chain. This action ensures that the valid transactions and state cor-
responding to off-chain requests and responses are recorded on the blockchain. You
can view these Txs on Etherscan or Ganache. The goal of this chapter is to make sure
the data about the valid Txs is recorded and payments are settled automatically.

6.5 Retrospective
This chapter brought out an important distinction between traditional programming
and blockchain programming: you need to design the on-chain data (the data that
gets recorded on the blockchain) carefully to avoid overloading the blockchain. You
can use the types of on-chain data introduced and discussed in this chapter (receipts
and event logs, transaction data, and state data) as guidelines when designing smart
contracts. The blind auction Dapp focused only on event-based on-chain data. ASK
Dapp illustrated the use of transaction and state-related on-chain data. The state
on-chain data records how the variables in a smart contract change over the lifetime
of an application. You followed the same development steps for both the blind auc-
tion and ASK Dapps, strengthening your understanding of the development process
using Truffle. By now, you should be familiar with the truffle compile and truffle
migrate commands and with the use of the npm (Node.js-based) web server to com-
plete your end-to-end Dapp development.

 In a traditional database, if there are about 10,000 airline transactions, you’ll have
an integrated database for 10,000-plus rows of data items. In a smart contract, you’ll
define one row of data items representing the transaction. When a Dapp executes,
one transaction at a time is confirmed and recorded on-chain, along with the state
changes and events emitted. One of the records may be in block 234567, another in
block 234589, and so on. These records collectively form the distributed immutable
ledger of the blockchain. As you can see, blockchain is not your traditional database:

160 CHAPTER 6 On-chain and off-chain data

it is a set of records distributed among the blocks of a blockchain along with valid Txs
and data from other unrelated applications deployed on it.

 In the ASK Dapp example, you may have noticed that the three functions—
ASKRequest(), ASKResponse(), and settlePayment()—are not tied together with if
this then that code or logic inside the smart contract. But these related functions
are tied together by a unique identifier: the reqID. The airlines’ off-chain applications
make decisions about calling these functions. ASK member airlines may develop off-
chain applications that use the records on the blockchain for provenance, for evalua-
tion of transaction compliance, or for general data analytics purposes.

 In blockchain applications, all the overt logic is outside, with the off-chain data
and functions. The blockchain is like a covert observer that systematically records rel-
evant information on-chain about activities that happen off-chain.

 You may wonder why, then, you didn’t write thousands of lines of code and multi-
ple classes for the smart contract code. Even though smart contracts are simple and
succinct, a lot of operations are carried out by the blockchain infrastructure behind
the scenes. This situation is similar to the famous MapReduce algorithm used in big
data analytics that fits within a single page. In that case, all the work is done behind
the scenes by the MapReduce infrastructure.

6.6 Best practices
Here are some best practices, specifically focusing on on-chain and off-chain data:

 Blockchain program is not about translating or porting an application in a
traditional programming language (say, Java) into a blockchain programming
language such as Solidity. Define in a smart contract only the data needed for
on-chain recording—nothing more. In the ASK Dapp, for example, only two
data structures are defined for the request data and response data that needs to
be recorded.

 Think of a smart contract as being a rules engine. It can serve as a gatekeeper
controlling access to specific actions. If a nonmember airline requests an ASK
action, the request will be reverted by the smart contract. This feature can be
used by an off-chain application to prevent unauthorized users from complet-
ing Txs.

 As far as possible, design your smart contracts in such a way that most of the com-
putations are performed off-chain. In the ASK Dapp, for example, the functions
ASKRequest() and ASKResponse() simply record that the respective transactions
have happened by transferring the parameter values into state variables. As
another example, the decision to call the settlePayment() function will be made
off-chain, based on the value of success in the ASKResponse() function.

 You must be aware of the immutable nature of smart contracts (and on-chain
data) when you design blockchain-based systems. Think of smart contracts as
being long-running programs and provide for repeated execution by using
state properly and not using loops.

161Summary

 Do not define a traditional database in a smart contract. If you do, there will be
multiple replicated databases, one copy in each node. Also, do not port a data-
base from a centralized system to a smart contract. Any centralized database has
to be off-chain.

 You can design systems with fiat currency payment systems for traditional opera-
tions and cryptocurrency payments for the blockchain-based operations. You
used ether for the settlePayment() function in the ASK Dapp, but the original
airline tickets were probably bought with fiat currency such as U.S. dollars or
Guatemalan quetzal.

6.7 Summary
 In the long line of paradigms in the evolution of programming, from struc-

tured to functional to object-oriented to concurrent and parallel programming,
blockchain programming is emerging as the next significant component of
modern systems.

 The concept of on-chain and off-chain data and operations distinguishes block-
chain programming from traditional programming.

 More than transactions are stored on-chain; other data and hashes are stored
on-chain as well to support the robustness and usability of the blockchain.
These records include the state and state transitions of variables in smart con-
tracts, function return values, events emitted, and items such as logs, all of
which are stored in the header of the blockchain to provide provenance for the
existence of on-chain data of a specific value.

 Off-chain data sources are application-dependent and are free from the limita-
tions of the blockchain.

 Blockchain enables you to record events emitted by smart contract functions.
This feature provides a way other than the function return value to provide
notifications from the blockchain layer to upper-level applications.

 Auctions and marketplace models are well suited for blockchain applications.
 End-to-end Dapp design and development roadmap were illustrated by two use

cases: blind auction and ASK airline.
 The blind auction Dapp illustrated the use of two types of on-chain data:

receipts and event logs.
 The ASK airline Dapp is an example of a blockchain application that includes

both on-chain and off-chain data. It shows the beginnings of the use of crypto-
currency in a Dapp. It demonstrates how cryptocurrency payments can coexist
with fiat currency payments. It also provides a model of a smart contract purely
for recordkeeping (without any complex computations) on the blockchain.

162

Web3 and
 a channel Dapp

The focus of this chapter is web3. Using web3, you can pretty much set your Dapp on
autopilot. What is web3? The web3 API, called simply web3, is a comprehensive
package for accessing blockchain functions. Blockchain infrastructure provides
services for managing accounts, recording transactions (Txs), and executing smart
contracts, all of which you explored in previous chapters. Web3 exposes the functions
of the Ethereum blockchain client node; it facilitates the interaction of external

This chapter covers
 Using the web3 API to access Ethereum client

node functions

 Programming with web3 modules and a web3
provider

 Designing a Dapp with a side channel

 Implementing a micropayment channel for a
global cleanup problem

 Connecting off-chain operations with on-chain
operations

163Web3 API

applications and the blockchain node, and it facilitates programs to access blockchain
services. You used web3 in Dapp application development in chapters 4 and 6, which
discussed web3 use at a high level. In chapter 4, you used web3.js in Dapp development
as part of the glue code (app.js) between the web application and the smart contract,
and you included web3 (the minified version in web3.js.min) in the Dapp.

DEFINITION web3.js is a JavaScript library—commonly referred to as web3—
that enables applications to access the services offered by the Ethereum block-
chain client node.

This chapter demonstrates the role of web3 and strengthens your knowledge of and
skills in application development with web3. You’ll take steps toward becoming an
informed user of web3 API in developing Dapps. This chapter lets you explore the
web3 API in-depth, learning web3 concepts and understanding the essential role that
it plays in delivering the blockchain services to Dapps. You’ll also learn about various
functional modules defined in the API. You’ll use web3 to develop a versatile channel
feature to build a Dapp for cleaning up global recyclable plastics. In this chapter,
you’ll see how to use a new concept called side channel for a novel application of
micropayments. You’ll develop an end-to-end solution for a simplified version of a
micropayment channel supported by the Ethereum blockchain. Take time to under-
stand web3 concepts, and carefully follow along with the Dapp development
described in this chapter.

NOTE I’ll use web3 in this text to refer to the entire library (web3.js). Note
that web3 is the class name and web3 is the package name in the web3 JS API
codebase in GitHub.

7.1 Web3 API
The web3 API provides a standard set of classes with their functions so that all the par-
ticipants in a decentralized application can use the same syntax and semantics to
interact with the blockchain. Otherwise, the interactions may result in inconsistencies
among the participants, rendering the blockchain useless. It may be necessary, for
example, to ensure that all participants in an application use the same hash function
to generate and verify a hash value of data. The web3 API provides standard functions
for hashing so that the hash computed for a given data and the hash function used for
the computation are the same for all the participant applications, resulting in consis-
tent computations. Hashing functions were discussed in chapter 5.

7.1.1 Web3 in Dapp stack

Where does web3 appear in your Dapp stack? Functions supported by web3 can be
placed in two categories: those that support the core operations of the blockchain
node and those that enable the decentralized application stack on the blockchain.
Figure 7.1 illustrates the essential role played by web3 in these two modules, followed
by a detailed explanation of each module.

164 CHAPTER 7 Web3 and a channel Dapp

 The top part of figure 7.1 shows the application module, which has a web server and
application code specified in app.js. The bottom part of figure 7.1 is the blockchain cli-
ent node module, which provides the core blockchain services. Let’s further analyze the
layers of the stack in figure 7.1:

 The top layer of the stack is a web client, but it could be any client—mobile or
enterprise—that requires the services of the blockchain.

 In the next layer, the web application’s app.js uses the web3.js library to access
the blockchain services.

 The layer below is a traditional web server, listening to a port for client requests,
and in this case implemented by the Node.js server.

 Web3.js enables app.js application logic to connect to the underlying web3 pro-
vider in the blockchain node.

In the stack shown in figure 7.1, the blockchain client node is called web3 provider
because it hosts (and thus provides) the classes and functions specified in web3. The
bottom layer is the actual blockchain functions, including the smart contract execu-
tion environment and the ledger recording the blocks of Txs. The Ganache test chain
you used in chapters 4 and 6, and an Ethereum node implemented in the Go lan-
guage (geth node), are examples of a blockchain client node.

 In all, figure 7.1 provides an overview of the architecture of a typical Dapp stack.
You’ll use this stack as a guideline to implement a blockchain feature called a micro-
payment channel for addressing the global problem of plastics cleanup.

 Before you launch into designing the Dapp, let’s learn a little bit about web3. If
you prefer, you can skip to application design in section 7.2.

Example: User interface

Blockchain node (services)
including smart contract and

blockchain records

Example: a Node.js server

Example: app.js in
your Dapp

Example: Ethereum node,
Ganache, geth (go ethereum)

Web client

Web server

Application with web3 instance and
web3 function calls

Web3 provider

Blockchain client node as
the web3Provider

Application
module

Blockchain
client node module

Blockchain network

Figure 7.1 Role of web3 in the blockchain-based Dapp stack

165Web3 API

7.1.2 Web3 packages

Web3 API is a large unit with many packages representing various functions. It consists
of six packages: core, eth, net, providers, shh, and utils (figure 7.2). You’ll use
web3.eth, web3.providers, and web3.utils in this chapter:

 The eth package and its subpackages enable an application to interact with
accounts and smart contracts.

 The providers package lets you set a specific web3 provider, such as Ganache.
 The utils package provides a standard implementation of common utility

functions for their uniform use by the Dapps.

Among the other packages, web3.core implements the core protocol for the opera-
tion of the blockchain, web3.net implements the networking aspects of transaction
broadcasting and receiving, and web3.shh is for an advanced concept called whisper
protocol that allows Dapps to communicate with one another.

The web3 API lets you use the web3 class provided by the web3.js library and all its
subclasses. It allows you to communicate with the local node through the RPC port. It
also provides access to the eth object and its functions via web3.eth and network
objects, via web3.net and its functions. You get the idea.

 It is necessary to understand how web3 (of blockchain) works as you learn to
develop blockchain applications at various levels. Figure 7.3, an enhanced version of
figure 7.1, shows the use of web3 in an application. In the figure, the web3 provider
implements the web3 API. The app.js of the application uses this web3 provider’s
function calls to access and interact with the underlying blockchain client node. The
figure also shows the relationship of the client node with the blockchain network. The
blockchain network connects many client nodes, such as the one shown in figure 7.3.

Web3

core eth net providers utilsshh

Web3 API provides packages
to access, manage,
and interact with an
Ethereum blockchain node.

abi accounts admin contract personal

For interaction
with a running node For specifying

web3 provider
For utility functions such as
random number generator
and number conversion

Blockchain core
functions

Networking and whisper
protocols are advanced
topics not discussed here.

Figure 7.2 Web3 packages and structure

166 CHAPTER 7 Web3 and a channel Dapp

To apply and illustrate the web3 concept, sections 7.2 and 7.3 describe a channel con-
cept and a micropayment channel Dapp for facilitating global plastics cleanup, and
provide an end-to-end implementation. The micropayment channel is based on the
example provided in the Solidity documentation. The planetary-level plastics cleanup
application was created especially for this chapter.

7.2 The channel concept
You must recognize by now that blockchain is not intended to replace existing appli-
cations, but to address issues that are not solvable with traditional approaches. Don’t
think of replacing your current system with a blockchain system or porting an existing
application in one language (such as Java or Python) to Solidity simply to use the
capabilities of blockchain technology. You have to be thinking about newer and never-
before-seen application models for blockchain. Similar to the Dapps you learned
about in chapters 4–6—for voting (ballot), holding an auction (blind auction), and
trading in the marketplace (ASK airlines)—the channel concept you’ll learn in this
chapter is ideally suited for blockchain-based decentralized applications. In section
7.3, you create a micropayment channel that enables new business models and
encourages the participation of diverse people in an ecosystem emerging from block-
chain technology.

 The channel concept is ubiquitous in many domains, from geology to business. A
channel is a path along which information passes from one point to another. In this
chapter, you’ll use it for a payment mechanism. This concept is popularly known as
the payment channel. Many cryptocurrency blockchains (including Bitcoin, Ethereum,
and HyperLedger) have implemented the channel concept. The side channel con-
cept is used in Bitcoin as a model for a lightning channel and in Ethereum as a state

Blockchain node (services)
including smart contract and

blockchain records

Web3 API (web3.js
library)

Web client

Uses

Web server

Application with web3 instance and
web3 function calls

Web3 provider
Implements

Application connects
to the web3 provider
before issuing callsApplication

module

Blockchain client
node module

Blockchain network

Figure 7.3 Use of web3 API

167Micropayment channel

channel for off-chain transactions among trusted parties. Note that these channels are
side channels besides the main cryptocurrency transfer channels. These side channels
or side chains have been added to address scalability in blockchain networks, to
improve transaction times, and to create micropayment channels.

DEFINITION A payment channel is a means by which payments are transferred
from one account to another. A side channel is an off-chain instrument
enabled by the on-chain blockchain capabilities of smart contracts, hashing
functions, cryptographic signatures, and identity management.

7.3 Micropayment channel
Micropayments are an age-old practice all over the world. Many local mom-and-pop
economies depend on micropayments for daily living as well as for sustaining the local
economy. These payments typically do not involve conventional financial institutions
such as banks. With the advent of the digital age, efforts were focused on digitizing
these micropayment methods, but they met limited success. The Bitcoin blockchain
changed all that by proving the feasibility of online payments among unknown peers.
With that breakthrough, interest in micropayments has been revived, and rightly so.

 Here are some basic facts about a micropayment channel:

 It is defined by endpoints identified by the sender and receiver account
addresses.

 It facilitates small (micro) and frequent payments between sender(s) and
receiver(s).

 Payment values are less than the transaction fees charged on transactions on
the main channel. (This characteristic is understandable.)

 The relationship between sender and receiver is temporary, typically termi-
nated after payment is settled and synchronized with the main channel.

Figure 7.4 shows these concepts and the relationship between the on-chain main
channel and off-chain side channel between two accounts. Anybody can join and leave
the main channel, and any account can transact with any other account. Every transac-
tion on the main channel is recorded on the blockchain. The main channel is perma-
nent, as in Bitcoin’s and Ethereum’s main chains.

 Now look at the side channel in figure 7.4. The micropayment channel is an exam-
ple of a side channel between selected accounts—in this case, between two accounts—
and is temporary. The transactions between the side channel accounts are off-chain
and not recorded on the chain until the side channel synchronizes with the main
channel. This synchronization happens when one of the participating accounts sends
a transaction on the main channel, capturing and summarizing the details of the off-
chain transactions. The side channel may be dissolved after synchronization with the
main channel. The micropayment channel concept is discussed in the Solidity docu-
mentation and in many online publications.

168 CHAPTER 7 Web3 and a channel Dapp

7.4 Micropayment channel use case
To motivate the micropayment channel, let’s consider a real-world problem: recyclable
plastics on the earth. No country is immune to this problem, which is affecting ecosys-
tems in the ocean and on land, including forests and rivers. It is simply impossible for
any single organization, such as the United Nations, to send people to clean up all the
countries in the world. Even if UN-like nongovernmental organizations provide funds,
it is cost-effective for locals to do the cleanup. So this problem is a perfect decentralized
problem: it has global scope, and participants are decentralized and not necessarily
known to one another. Let’s examine how blockchain can help solve this problem. Let’s
use the acronym MPC (Micro Payment Channel) to represent the Dapp.

PROBLEM STATEMENT Assume that a United Nations-like nongovernmental
organization wants to pay individuals certain incentive payments (micropay-
ments) for every bin of recyclable plastics collected from the environment and
deposited at a designated location for recycling and proper disposal. You are
required to design and develop a decentralized solution to facilitate this process.

Here are some assumptions and further details:

 Some verification mechanism exists to make sure that the bins of plastics col-
lected contain the right amount and correct types of plastics. Otherwise, bins
are rejected.

 A human worker or even a robot collects plastics in bins and deposits them at
designated locations. Every time the bins collected by a worker are verified, a
message is sent to the patron organization. On receiving a message, the patron

Main channel: on-chain Txs

Account Account Account Account

Side channel: off-chain Txs

Examples: Bitcoin’s lightning channel,
Ethereum’s state channel,
Micropayment channel

Periodically or at the
end of transfer
synchronized to
the main channel with
an on-chain Tx

Side channel: Transient:
short-lived,
account-to-account

AccountAccount

Example: Bitcoin,
Ethereum
main chain,
payment channel

Permanent chain

Figure 7.4 Relationship between the main channel and micropayment channel

169Micropayment channel use case

organization sends an authorized off-chain micropayment through a channel
established between the organization and the worker. Potentially, there may be
many micropayments paid to the worker in a single session of plastics collec-
tion. In a given session (such as a day), the value of a micropayment is the sum
of all the previous micropayments added to the current one.

 Instead of cashing these small payments every time a bin of plastic garbage is
collected and incurring fees, the worker waits until the last bin of the day and
then receives the payment through one on-chain Tx. By design, this single Tx
request is for the value of the last micropayment because it holds the accumu-
lated value.

 After the payment is claimed, the channel is closed. A new channel is created,
and the process is repeated for every worker and every session of the worker.
This opening and closing of an account is impossible in a traditional banking
system but is a normal process in a blockchain system.

Let’s design and develop MPC-Dapp to demonstrate how it solves these issues by using
an off-chain micropayment channel. This off-chain instrument will be supported by
on-chain blockchain services using a smart contract and secure digital signing. And of
course, web3 API will be used to access these blockchain services for all these opera-
tions. Before you develop a blockchain-based solution, however, don’t overlook tradi-
tional financial systems, such as banks; assess whether they can solve the MPC problem
without involving a blockchain.

7.4.1 Traditional banking solution

Figure 7.5 shows a possible solution that uses the conventional banking system to pay
for the massive, decentralized global plastics cleanup. In this case, the organizer of
MPC will deposit the escrow in the bank and somehow (such as through off-chain
messaging) let the pre-identified workers know that they can start the cleanup. For
this discussion, you can assume that the relationship between the organizer (sender)
and a worker is one-to-one. A worker collects garbage in bins (in this case, 5, 1, and 2,
as shown in figure 7.5), and keeps sending information about this collection to the
organizer. In this scenario, the organizer first issues a check for $5 ($1 per bin), fol-
lowed by a check for $1, and finally a check for $2.

 The worker gives the bank the checks to cash in. The bank verifies the signature
on the checks and pays the worker from the escrow deposited by the organizer. The
worker can stop working at any time. The process is like working for a ridesharing ser-
vice; workers can work when they want to and cash in when they want to. The cycle
continues, with many decentralized workers connecting and establishing a channel
with the organizer to get paid for the global cleanup effort.

 Note that this solution uses the traditional banking system to create a new payment
model: small payments for workers who may not have accounts at a bank. This model
is a hypothetical attempt to overfit a new feature into traditional infrastructure. Con-
ceptually, this idea seems possible, but there are significant issues with the traditional

170 CHAPTER 7 Web3 and a channel Dapp

approach compared with the blockchain solution, as shown in table 7.1. The table
highlights issues such as account creation and small payments; it examines where the
traditional system falls short and how the blockchain solution elegantly addresses
these issues.

Table 7.1 Traditional banks vs. blockchain payment channels

Traditional banking system Blockchain payment channel

Account creation—For millions of people, it is
impossible to open an account in the traditional
banking system due to a lack of credentials,
such as a job or a home address.

Blockchain is built on this very concept of account-
based identity and peer-to-peer interaction between
unknown participants. It can facilitate quick account
(digital identity) creation.

Small payments—Payment amounts involved may
be too small to warrant account creation.

Blockchain by design naturally supports online digi-
tal micropayments.

Check-cashing fees—Payment in regular checks for
every collected bin of plastics may generate
numerous checks, and check-cashing fees may
be higher than the payments.

The blockchain approach uses a cumulative check-
payment approach to address cashing of online
digital checks, which helps minimize fees.

Check verification process—Signing checks and
signature verification in a traditional system can
be cumbersome for a large number of checks.

Blockchain uses hashing and cryptographic func-
tions for automatic digital signature verification at
scale.

Figure 7.5 Traditional approach of bank check payment for work

Deposit escrow
for payment

Bins
collected

2

Bins
Collected

1

Bins
collected

5

$5
signature

$1
signature

$2
signature

Claim payment

Payment channel

Do work.

Multiple payments

Collect checks for
work rendered.

Payment checks for work

Inform work
completed

Bank verifies signature,
amount, deducts amount
from escrow, and pays worker.

Issue checks

Organizer

Worker

Time t Time t+1 Time t+2

171Micropayment channel use case

Let’s compare the two approaches. Figure 7.6 shows a modified version of figure 7.5,
but the solution depicted is that of a blockchain-based micropayment. The differences
between the blockchain version and the traditional system are highlighted in figure
7.6. Take a few minutes to review the figures carefully, noting the differences in the
blockchain application for MPC.

Account permanency—When an account is
opened, it is permanent and not amenable to a
casual open–close model, which is suitable for
decentralized users.

Blockchain users can join and leave as they wish,
and the open–close channel is naturally supported;
thus, short-lived channels are a norm.

Cost-effectiveness—It is not cost-effective for a
casual decentralized user to create an account
for a small payment.

Blockchain naturally supports small payments and
casual users.

Agility—A traditional bank account by design is
long-running and permanent, and takes consider-
able time (days) to create.

Blockchain-based payment channels can be opened
and closed quickly, and are transient to suit new
application models such as MPC.

Table 7.1 Traditional banks vs. blockchain payment channels (continued)

Traditional banking system Blockchain payment channel

Figure 7.6 Traditional vs. blockchain-based system with differences highlighted

Deploy smart contract;
deposit escrow for
payment

Bins
collected

2

Bins
collected

1

Bins
collected

5

Wei 5K
signature

Wei 6K
signature

Wei 8K
signature

Micropayment channel

Do work.

Multiple payments
Micropayments for work;
amount cumulative

Inform work
completed

Smart contract verifies signature,
amount, deducts amount
from escrow, and pays worker.

Send micropayments

Organizer

Worker

Single check
claim

Smart contract Claim payment;
channel
smart contract
undeployed

Checks of figure 7.6
replaced by
micropayments

Bank in figure 7.6 replaced by
smart contract

172 CHAPTER 7 Web3 and a channel Dapp

Here are the important differences between traditional and blockchain solutions: a
smart contract replaces the bank, and digital micropayments replace the payment
checks. Note the operations of the blockchain-based MPC shown in figure 7.6:

 Organizer opens a channel. A smart contract is deployed and initialized with
the accounts of the two participants: the organizer and the worker. The orga-
nizer deposits an escrow for payments. A channel is created for every worker.

 Micropayments replace checks.
 The organizer pays for micropayments in wei (for example, 1,000 wei for one

bin), sending signed messages off-chain.
 The micropayments sent are monotonically increasing in value, the latest one

holding the cumulative payment until that point.
 A worker claims payment by sending the most recent message that the orga-

nizer sent to collect payment and then closes the channel by destructing (via a
self-destruct function) the smart contract.

As you can see, the blockchain solution is ideally suited to addressing the issues dis-
cussed in table 7.1.

NOTE If the bins collected are 3, 1, and 2, for example, the micropayments
are for 3, 4 (3+1), and 6 (3+1+2)—the cumulative values.

After the worker claims the one single cumulative payment, the contract is destructed
or undeployed, thus addressing the cost of numerous small checks as well as fraudu-
lent double spending (a technical term for repeat spending of a digital check) of digi-
tal payments. A micropayment is like a cash payment for a one-time job. You don’t
have to establish a formal financial relationship with the vendor, such as creating and
maintaining an account, so there are no cost overheads. Note that there are no paper
checks in the MPC application. Therefore, the application provides a safe, secure
mechanism for online digital micropayments to decentralized participants.

7.4.2 Users and roles

The design principles (DPs) you’ve been using are provided in appendix B. Let’s
apply them to design the solution for MPC. DP1 tells you to design before you code,
and DP2 and DP3 are about identifying the users and their roles. You can use figure
7.6 to identify the users of the MPC and also the roles of the users. The users of the
micropayment channel MPC-Dapp are the organizers who secure the funding for the
massive plastic cleanup and the workers who do the recyclable plastics cleanup. Any-
body may serve as a worker. In MPC, all you need is the skill to collect plastic garbage
and deliver it to an appropriate station. So anybody (with good or bad credit) in the
world with an accessible blockchain identity (account address) can join the effort.
They don’t have to have a bank account. The identities of the organizer and the
worker (as well as the smart contract) are their 160-bit account numbers. In this case,

173Micropayment channel use case

these account numbers are the Ethereum blockchain accounts that can be created in
a few minutes.

 A high school student in Mombasa, Kenya, could generate an identity for them-
selves, access the MPC web page or app, and initiate opening a microchannel between
themselves and an organizer. As they walk every day to school, they collect recyclable
plastic garbage, deposit it at a verification station, and get a 0.001 ETH micropayment
message from the MPC organizer. On the way back home, they do the same. They col-
lect two bins because they have more time. They get a micropayment of 0.002 ETH
after depositing it at a station near their home. After a month or so, their last micro-
payment is 0.09 ETH. They are happy that they can spend the payment on a movie
weekend, and they claim it (0.09 ETH) by sending a message (Tx) to the MPC smart
contract. The worker enjoys this little extra fund, and some plastic garbage has been
removed from the streets of Mombasa. When the payment is settled, the channel is
closed. The worker may choose to open another channel and continue with the
effort, or they may not. Their friends and neighbors may join in the effort. Thus, the
blockchain-based solution is loosely coupled but agile (with quick, efficient setup and
dissolution). That is the beauty of this paradigm.

7.4.3 On-chain and off-chain operations

From the discussions, comparisons, and the scenario in the preceding sections, it is evi-
dent that the interaction pattern in MPC is significantly different from that of typical
web applications, in which the interaction often follows a request-response pattern. You
can even say that the micropayment channel is a new paradigm that is well-suited to
blockchain technology. In this new paradigm, there are off-chain and on-chain opera-
tions, like the on-chain and off-chain data you learned in chapter 6, which leads to the
next design principle.

DESIGN PRINCIPLE 10 An important design decision in blockchain applica-
tions is to determine which data and operations are to be coded on-chain and
which data and operations are to be implemented off-chain.

To better understand on-chain and off-chain operations, let’s analyze the MPC prob-
lem once more. As shown in figure 7.7, the sequence of operations provides an over-
view of the micropayment channel for global massive plastics cleanup. The details of
the operations are as follows:

1 Micropayment channel opened. A single-use micropayment channel between sender
(organizer) and receiver (worker) is created by deploying a smart contract.

2 Plastics collected. In off-line (and off-chain) operations, people or robots (work-
ers) collect plastics garbage in bins.

3 Collections verified. Off-chain verification is done by appropriate automatic
instrumentation, with sender-organizer being informed of how many bins were
collected and by whom (using worker identities).

174 CHAPTER 7 Web3 and a channel Dapp

4 Micropayments paid. Organizer sends off-chain signed micropayment messages to
the worker for bins verified in step 3.

5 Payment claimed. Using a single on-chain transaction executed on the smart con-
tract, the worker is paid from escrow deposited by the organizer.

6 Channel closed. After the payment, the channel is closed by the destruction of
the smart contract.

This list guides the design of the smart contract and web user parts of the MPC-Dapp.
Operations 1, 5, and 6, for deploying the MPC and the payment claim, are on-chain
and will guide the design of the smart contract next. Operations 2, 3, and 4 are off-
chain; only operation 4 is within the scope of the MPC application implementation in
this book. Identify the operations in figure 7.7, and make sure that you understand
them before moving on to the design.

Figure 7.7 Concept of micropayment channel (MPC) for the decentralized global cleaning

Micro-payment
Micro-payment

Donations

1 2
2

3

4

5

1 5 On-chain operations

2 3 4 Off-chain operations

Micropayments messages

Worker

Worker

Organizer

6

6

Collection bins

Deploy smart contract
with escrow
for micropayments

Claim payment +
close channel by
destructing SC

Nongovernment
organizations Multiple off-chain micropayments

for plastics collection bins

Plastics
collection by robots

Micropayment
channel

smartcontract

Deposit station:
Off-chain automatic
verification of collection bins

Plastics collection
by humans

175Micropayment channel use case

7.4.4 MPC smart contract (MPC-contract)
Recall the application pattern that you followed in earlier chapters. You’ll use the
same structure for the MPC-Dapp, as shown here:

MPC-Dapp
|
|--MPC-contract
|
|--MPC-app

For the MPC-contract, the smart contract you’ll use is a simplified version of the code
discussed in the Solidity documentation. The contract diagram will help you better
understand the code. Figure 7.8 shows the contract diagram for MPC (applying DP 4).

The contract has two public functions, including the constructor. These functions
code the two on-chain operations (1 and 5) identified in the analysis in figure 7.7:

 The constructor allows the organizer to deploy the smart contract.
 The claimPayment() function is invoked by the worker when they want to claim

a micropayment.

The claimPayment() function is where all the data sent by the claimant is validated.
Many items may be validated, but in this case, the only one validated is the signature of
the sender. In this case, isValidSignature() is called to check the cryptographic
signature. This function in turn works with three more functions—recoverSigner(),
splitSignature(), and prefixed()—along with the built-in function ecrecover() to
obtain the signer info/data from the signature hash sent by the worker/claimant. This
multifunction process is necessary to ensure the robustness of the automatic
verification system and the blockchain network, which participants can join and leave
as they wish. Moreover, when you are replacing a physical bank with a digital smart
contract, you need all these cryptographic functions to replace the measures that
traditional systems use to thwart fraud and prevent misuse. Also, you can use this code
snippet for recovering the signer in any of your future Dapp development.

Helper functions in
recovering organizer’s
address from signature:
internal utility functions;
not recorded on blockchain

Invoked by organizer

Invoked by worker

Extracts organizer’s (identity)–
address from signature and
validates before payment

MPC

address sender public payable

address recipient public payable

//escrow deposit data–implicit

constructor(address payable reciever)

claimPayment(uint amt, bytes memory signature)

isValidSignature(uint amt, bytes memory signature)

splitSignature(bytes memory signature)

recoverSigner(bytes32 msg, bytes memory signature)

prefixed(bytes32 hash)

Figure 7.8 Contract diagram for MPC

176 CHAPTER 7 Web3 and a channel Dapp

 Here is the smart contract code that implements all the functions specified in the
contract diagram:

 The link or microchannel between the organizer and worker is established by
the organizer calling the constructor to deploy the smart contract.

 The worker’s address is sent as the parameter recipient in the constructor.
The organizer is the msg.sender of the call that deploys the contract.

 Note that the claimPayment() method has various validation checks at the
entry of the function body. These validation checks are specified with the
require clause. If the condition stated within the require clause fails, the func-
tion call is reverted, and failure is recorded in the receipt tree. If it fails, there is
no record of this Tx on the blockchain’s distributed ledger technology (DLT).

 A smart contract can hold a balance of ether implicitly because every valid
address in Ethereum can have an account balance. You can send and receive
value (ether) from a smart contract address. MPC uses this unique property of
smart contracts. Imagine a piece of computer code having an identity (account
address) and an account balance!

 The conditions explicitly verified include a valid signature, valid recipient
(worker), and sufficient balance in the escrow. If verification of these condi-
tions is successful, the claim amount is transferred, and the smart contract and
the micropayment channel are closed via the self-destruct statement. Imagine a
bank getting imploded after every single channel is closed! This is impossible
for a bank but possible with a smart contract.

Review this new paradigm by examining the smart contract code in the next listing.

contract MPC{
 address payable public sender;
 address payable public recipient;
 constructor (address payable reciever) public payable
 {
 sender = msg.sender;
 recipient = receiver;
 }

 function isValidSignature(uint256 amount, bytes memory signedMessage)
 internal view returns (bool)
 {
 bytes32 message = prefixed(keccak256(abi.encodePacked(this,
 amount)));
 return recoverSigner(message, signedMessage) == sender;
 }

 function claimPayment(uint256 amount, bytes memory signedMessage)
 public{

Listing 7.1 MPC.sol

Addresses of the organizer and worker:
endpoints of micropayment channel

Address of organizer in the signedMessage validated

claimPayment
pays worker if
conditions are
met

177Micropayment channel use case

 require(msg.sender == recipient,'Not a recipient');
 require(isValidSignature(amount, signedMessage),'Signature
 Unmatch');
 require(address(this).balance > amount,'Insufficient Funds');
 recipient.transfer(amount);
 selfdestruct(sender);
 }

 function splitSignature(bytes memory sig) internal pure
 returns (uint8 v, bytes32 r, bytes32 s)
 {
 require(sig.length == 65,'Signature length');
 assembly{
 r := mload(add(sig, 32))
 s := mload(add(sig, 64))
 v := byte(0, mload(add(sig, 96)))
 }
 return (v, r, s);
 }

 function recoverSigner(bytes32 message, bytes memory sig)
 internal pure returns (address)
 {
 (uint8 v, bytes32 r, bytes32 s) = splitSignature(sig);
 return ecrecover(message, v, r, s);
 }

 function prefixed(bytes32 hash) internal pure returns (bytes32){
 return keccak256(abi.encodePacked("\x19Ethereum Signed
 Message:\n32", hash));
 }
}

The smart contract has taken care of the on-chain operations of opening a channel
(1), paying the claim (5), and then closing the channel (6). There is significant work
left for the off-chain part, the most important of which is signing the micropayment
when the worker completes verification of bins of collected garbage. The signing of
the micropayment message is the responsibility of the off-chain part or the MPC-app
module of the Dapp.

WHY DESTRUCT THE SMART CONTRACT?
Consider on-chain operation 6 in figure 7.7 and the corresponding self-

destruct(sender) code in the claimPayment() function. Do you wonder why the smart
contract is destructed after the payment is transferred? Imagine somebody collecting
recyclable bottles and depositing them in a machine for a few cents. The person need
not establish a bank account for this purpose; neither do they have to remember or keep
track of the machine after cashing the collection. Similarly, in the decentralized
channel, you do not want the worker to incur more overhead than the payment they
may collect. Also, they should not be cashing the same micropayment repeatedly

Balance is a predefined attribute
of an account address.

Smart
contract self-

destructs after
sending the
balance to
organizer

Functions for
recovery of signer

from claim message

178 CHAPTER 7 Web3 and a channel Dapp

(double-spending, in Bitcoin terminology). These issues are precipitated by the fact that
online participants in MPC are temporary and are typically unknown to the
organization. That’s why the smart contract is a transient channel between the organizer
and a worker. Also, the cost of deploying and undeploying the MPC contract is
significantly less than the typical micropayments to the workers.

 These ideas about temporary channel are new concepts that you may not have
seen in your traditional programming, but you may want to remember them when
designing blockchain programs with smart contracts.

7.4.5 MPC application development (MPC-app)

Let’s develop MPC-app, the off-chain part of the Dapp where the user interface is typi-
cally located. Recall from chapter 4 the design pattern or structure for the MPC-Dapp:

 A web application hosted on a Node.js server
 A web stack with a user interface
 app.js implementing the application’s glue code with web3 calls for interfacing

with the blockchain services

Among the off-chain operations—plastics collection, verification of bins at a station
that informs the organizer, and digital signing of micropayments by the organizer (2,
3, and 4 in figure 7.8)—the only concern for the developer of MPC-Dapp is the digital
signing of the micropayments. The organizer digitally signs the micropayments for
later verification during the claim process.

 Let’s examine the digital signing operation, which is a crucial feature of the MPC-
Dapp and highly useful in blockchain-based digital networks of unknown participants.

DIGITAL SIGNING

What is digital signing? Consider a typical bank check, shown in figure 7.9. It has the
amount, bank details, sender details, receiver details, check number, and signature of
the sender (a unique signature authorizing the payment). The same figure shows a
digital payment message of a payment channel with details mapped one-to-one with
the traditional bank check.

 Observe that bank details are replaced by the smart contract address and the check
number by the unique nonce of the sender account. The micropayment message of
the MPC could have all these data elements or a subset of them. The date on the tradi-
tional check is replaced by the timestamp of the transaction in the blockchain. The
timestamp of a transaction is created at the time of recording, not at the time of cre-
ation of the message! You should be aware of these significant differences between
bank checks and cryptopayment message. It is possible to pack more elements into a
micropayment message to add to the robustness. You’ll use the minimum required
data so as not to overload the blockchain.

179Micropayment channel use case

Before the message is signed, it is hashed to a fixed size. (Chapter 5 discusses hashing
in detail and provides examples.) Regardless of the number of items packed in a mes-
sage or the size of the message, the message is hashed to a unique 256-bit value. The
digital signing operation encrypts this hash value with the private key of the sender.
MetaMask can help in securely signing the hash value.

DEFINITION Digital signing of a message involves hashing elements of the mes-
sage into a fixed-size unique value and then encrypting it with the private key
of the sender account.

Let’s examine the code in the MPC-app that does this hashing and signing. For the
micropayment message in the MPC-Dapp, you’ll consider only the amount and the
smart contract address. The following code snippets from app.js do the magic—hash
the message, and sign it:

1936

Pay to the order of ___| $

Date_________

__Dollars

For__________________________ Signature_________________________

000000186 000000529 1000

Bank
details

Sender
details

Check
number Amount

Signature of
sender

Receiver
details

Traditional bank
check details

Payment message in
a payment channel

Amount Bank details Sender details Receiver details Check number Signature
of sender

Amount Smart contract
address Sender address Receiver address Nonce Signed by

sender

One-to-one
mapping

Figure 7.9 Traditional bank check mapped to a micropayment message

180 CHAPTER 7 Web3 and a channel Dapp

constructPaymentMessage:function(contractAddress, weiamount) {
 return App.web3.utils.soliditySha3(contractAddress, weiamount)
 }
...
web3.personal.sign(message, web3.eth.defaultAccount, function(err,
 signedMessage)

Open app.js from the codebase for MPC (in the MPC-app/src/js/ directory) in any
editor-reader, such as Sublime or Atom. The first snippet shown here is a construct-
PaymentMessage() for hashing the message elements; the second snippet does the
signing and is from the signMessage () function.

 You can observe the use of web3 to access the blockchain functions in the web3
API. The web3.utils package is used to call the hash function SoliditySha3 (Sha
means secure hash), and the web3.personal package is used to call the function sign
that encrypts the hash computed with the private key of the account. Review the
parameters of the sign function. The first parameter is the hashed message to be
signed, the second parameter is the account number whose private key is used in sign-
ing the message, and the third parameter is a callback function. The signed message
or an error is returned through this callback function. This code snippet is general
enough. Open the src/js/app.js from the MPC-app directory, and examine the func-
tions constructPaymentMessage() and signMessage(). You can reuse these functions
and patterns in other Ethereum-based applications that need secure digital signing.

NOTE In the UI, the app.js, and the smart contract, the signed message in the
MPC plays the role of a personal signature on a bank check. In the latter case,
a bank employee personally verifies the signature. In the MPC-Dapp, the
signed message is the composite of attributes derived from the contract
address, the payment amount, and the account address.

In response to the sign() function call, MetaMask facilitates signing the message with-
out exposing the private key of the sender account. The sample MetaMask window
that requests confirmation of the signing (appropriately titled Signature Request) is
shown in figure 7.10. The figure shows the hashed message, the account number of
the signer, and the message requesting the sign. You have to click the Sign button to
confirm and go ahead with signing the micropayment. Also, you have the option of
canceling the request by clicking the Cancel button.

NOTE MetaMask will require you to connect to the web application before
interaction because privacy mode on MetaMask is enabled by default.

181Micropayment channel use case

7.4.6 MPC sequence diagram

The UML sequence diagram (appendix A) is usually used during the design stage, as
specified in design principle 9 (DP 9). You can use it to study other interactions. In
this section, let’s use a sequence diagram to recap the interactions among the various
entities in the MPC-Dapp. Figure 7.11 shows the sequence diagram with four interact-
ing entities: the organizer, the smart contract, the worker, and the verifier.

 Follow the diagram from top to bottom along the timeline. The organizer account
deploys the MPC smart contract with the two addresses that are participants in the
micropayment channel: the address of the sender-organizer and the address of the
receiver-worker. This action opens the channel for off-line micropayments. The
worker collects the plastics garbage in bins and delivers it to a verifier. The verifier
could be an automatic machine that validates the contents of the bins and sends the
data about the bins collected to the organizer. Every time this data arrives, the orga-
nizer sends an equivalent micropayment (off-chain data) for the work performed to
the worker. This cycle is repeated until the worker decides to call it a day. They send
the claimPayment() request to the MPC contract with the amount (in the latest

Balance of
organizer’s account

256-bit hashed micropayment
message to be signed

MetaMask requesting
signature

From MPC
organizer’s
account

Figure 7.10 MetaMask
signature request window

182 CHAPTER 7 Web3 and a channel Dapp

message) and the signed message. The smart contract verifies it and pays the worker.
After the payment is confirmed, the MPC smart contract is undeployed, by which
action the channel is closed.

7.4.7 Demonstration of MPC execution
Now it is time to demonstrate the workings of MPC. The web interface is a single-page
UI, with many extra details that will not be revealed during actual field deployment of the
MPC-Dapp. These details are provided to facilitate comprehension of the MPC interac-
tion. The interface displays a running account balance of the sender, receiver, and the
smart contract address, for example, as well as the micropayment messages. These extras
usually are not presented to the user, but they are displayed here for demo purposes.

 Download MPC-Dapp.zip from the codebase for this chapter, and unzip the file to
extract the code. Then compile and deploy in Truffle as described in the following
sections.

SET UP THE MPC-DAPP

1 Start the test chain. Start the Ganache blockchain by clicking the Ganache icon
and then clicking Quickstart. The Ganache test chain services are enabled on
localhost:7545 port and linked to the web UI by MetaMask. (You can also start
Ganache from the command-line interface with ganache-cli options.)

Deploy
contract

Deploy with
deposit, organizer,
worker addresses

Decentralized
anybody

Autonomous
station

Repeated
multiple times

Opens payment
channel

Transfers payment to worker,
deducts from organizer,
sends balance to organizer,
and then closes channel

MPC smart
contract Worker

Collect plastics

Deposit bins

VerifierMPC
Organizer

constructor()

Inform number of bins

claimPayment()

Off-chain operation

On-chain operation

Time progress

Send micropayment message

Figure 7.11 Sequence diagram for MPC operation flow

183Micropayment channel use case

2 Compile and deploy smart contract(s). The base directory is named MPC-Dapp, and
it has two distinct parts: MPC-contract and MPC-app. From the base directory
MPC-Dapp, enter the following commands:

cd MPC-contract
 (rm –r build/ for subsequent builds)
truffle migrate --reset

These commands deploy all the contracts in the contracts directory. You should
see messages for the clean deployment of the contracts. Note the smart contract
address. You’ll also see messages for two smart contracts deployed: Migra-
tions.sol and MPC.sol. Remove the build directory using rm –r build/ before
subsequent builds using truffle migrate command.

3 Start the web server (Node.js) and the web component of the Dapp. Migrate to the MPC-
app directory from the base directory for MPC-Dapp:

cd MPC-app
npm install
npm start

You should see a message indicating that the server is starting and listening on
localhost:3000.

4 Start a web (Chrome) browser with the MetaMask plugin installed. Start a browser at
localhost:3000. Using your MetaMask password, make sure that MetaMask is
linked to the Ganache blockchain server. You may have to reconnect using 12
seed words of the Ganache test chain. Click MetaMask, and make sure that
MetaMask is on Ganache. Go to account 1, and log out. By clicking Import
account by using seed phrase, copy the seed words from the top of the Ganache
GUI, and use them to link MetaMask to the local Ganache test chain.

Now you can interact with the MPC-Dapp web interface, which appears as
shown in figure 7.12.

In figure 7.12, the screen is both color-coded and numbered (1 through 5) for the off-
chain and on-chain operations discussed in section 7.4.3. Note that the organizer or
sender UI is on top of the worker UI on a single web page. The timeline is shown with
significant events indicated by a dot. The UI presents several extra details for demo
purposes. Note points 1 through 5 in the interface. Point 1 is the indication of the
deployment of the MPC smart contract with the addresses of the organizer and the
worker initialized. Point 2 represents the worker collecting recyclable plastics in bins
and getting them verified. Point 3 is the organizer (Account 1 in MetaMask for this
demo) sending micropayments in response to the collection. Note that the worker-
receiver address-account number is prepopulated (for this demo). Point 4 is the area
where the micropayments will be displayed (again for demo purposes). Point 5 is the
claim interaction with the MPC smart contract by the worker (Account 2 in MetaMask

184 CHAPTER 7 Web3 and a channel Dapp

for this demo). Also, note the balances of the three accounts: the smart contract, the
organizer, and the worker. The values are updated as you progress through the demo.

INTERACT WITH MPC-DAPP

Here are the steps to follow to simulate a complete micropayment channel interac-
tion. You can follow along with these commands when you complete the deployment
of the smart contract and the Node.js server per instructions given in section 7.4.7:

1 In MetaMask, reset Account 1 and Account 2 for initializing the nonce to the
starting point. You reset the nonce of accounts by clicking the Account icon and
then selecting Settings > Advanced Settings > Reset Account. You reload the UI
web page when switching between organizer and worker roles.

2 In Account 1 on MetaMask, on the organizer UI, enter 1 for the container
(bins), and click the Send Micropayment button. MetaMask pops up and asks
you to sign the micropayment. After you click Sign in MetaMask, a micropay-
ment shows up in the right panel with the value, 1, and the signed message.

3 Repeat step 2 for monotonically increasing values, using first 3 and then 7 for
the value, meaning that seven bins were collected, as shown in figure 7.13.

Timeline

Sequence of operations

Figure 7.12 Web UI for MPC-Dapp before interaction

185Micropayment channel use case

4 Now let’s assume that the worker wants to claim payment. Make sure you are in
Account 2, which is the worker account in MetaMask. Enter the highest micro-
payment value (7, in this case) in the Worker UI, copy the signed micropay-
ment message, paste it for validation, and then click the Claim Payment button.
These actions invoke the MPC contract. If the data entered is correct, the
worker will be paid from the smart contract. If the transaction is completed suc-
cessfully, the balance of the escrow deposit after payment to the worker is
returned to the organizer, and the MPC smart contract is closed. Notice that the
balances at the top of the UI will change accordingly (Channel = 0; Organizer =
92.98…; Worker = 106.99…), as shown in figure 7.14.

5 If the claim payment is successful, a green notification message appears in the
bottom of the UI, as shown in figure 7.14. If the payment is not successful, a red
notification message appears.

Both organizer and worker accounts started with a balance of 100 ether and
ended up with 92.98 and 106.99, with some fractional ether spent for gas points
for transaction execution on the blockchain.

6 After claiming payment and closing the channel, the smart contract does not
exist, so any operation invocation will result in an error in MetaMask, as shown
in figure 7.15.

Signed micropayment
message

Organizer UI

Worker UI

Figure 7.13 MPC web interface after three micropayments of 1, 3, and 7 ETH

186 CHAPTER 7 Web3 and a channel Dapp

Figure 7.14 MPC sequence of operations and successful claim payment

After closing channel,
smart contract does
not exist; if you access
it then, you'll get this error

Figure 7.15 Error message when
the smart contract is accessed after
channel closure

187Micropayment channel use case

7.4.8 Accessing the web3 provider

One of the major goals of this chapter is to introduce web3 as an API for accessing
blockchain node services. You looked at most of these services in section 7.4.5. So
where are the other web3 calls in the MPC-code? They are in the app.js of the MPC-
app. In fact, web3 is the means by which the MPC-app web application accesses the
MPC-contract and the blockchain services. The core component of MPC-app is app.js,
which acts as the bridge between the UI and the blockchain node services, including
the smart contract. You already saw in section 7.4.5 how web3 is used for micropayment
message formation through a hashing function available in the web3.utils package.

 This function is for hashing the micropayment details:

web3.utils.soliditySha3(contractAddress,weiamount)

Another function specified in the personal package of web3 is for signing a message:

web3.personal.sign(message,web3.eth.defaultAccount,function(err,
 signedMessage)

Access to the smart contract deployed on the blockchain, MPC on Ganache, is pro-
vided by

web3.eth.Contract(data.abi, contractAddress, ..)

Internal computations related to cryptocurrency are in the wei denomination of
ether, so when a conversion is required, web3.utils is called:

web3.utils.toWei(amount,'ether')

A function for accessing the balance of accounts on the chain (in this case, the
Ganache test chain) is frequently used in the app.js code:

web3.eth.getBalance(accounts[1])

Web3 appears in the app.js code in more than 30 locations and is called during its exe-
cution many more times. Thus, knowledge of web3.js is essential for Dapp design and
development.

 Listing 7.2 shows the app.js code. There are five types of calls to web3 packages in
this app.js:

 For initializing the web3 object with the web3 provider—in this case, the
Ganache local test chain at http://127.0.0.1:7545

 For initializing the web3 contract object with the smart contract application
binary interface (abi) and contract address

 For accessing account and balance details to display in the UI to support user
interaction

188 CHAPTER 7 Web3 and a channel Dapp

 For application-specific (in this case, MPC-specific) hashing and signing of
messages

 For utility functions that convert wei to ether

App = {
 web3: null,
 contracts: {},
 url:'http://127.0.0.1:7545',
 network_id:5777,
 …
 init: function() {
 return App.initWeb3();
 },

 initWeb3: function() {
 …
 App.web3 = new Web3(App.url);
 }
 return App.initContract();
 },

 initContract: function() {
 …
 App.contracts.Payment = new App.web3.eth.Contract(data.abi,
 data.networks[App.network_id].address, {});
… })

 … },

 populateAddress : function(){
 ..
 new Web3(App.url).eth.getAccounts((err, accounts) => {
… },

 handleSignedMessage:function(receiver,amount){
 …
 var weiamount=App.web3.utils.toWei(amount, 'ether');
 …
 },

 constructPaymentMessage:function(contractAddress, weiamount) {
 return App.web3.utils.soliditySha3(contractAddress,weiamount)
 },

 signMessage:function (message,amount) {
 web3.personal.sign(message, web3.eth.defaultAccount, function(err,
 signedMessage)
{
… },

handleTransfer:function(amount,signedMessage){

Listing 7.2 app.js

Data for initializing
application App

Web3 initialized with Ganache,
the web3 provider here

Connect to
the smart
contract ABI
and address.

Get accounts
created in
the web3
provider
Ganache.

web3.utils used to
hash the message

web3.personal
to sign it

189Micropayment channel use case

 if(App.web3.utils.isHexStrict(signedMessage)){
 var weiamount=App.web3.utils.toWei(amount,'ether')
 var amount=App.web3.utils.toHex(weiamount)
 …}

app.js in MPC-Dapp demonstrates the use of a variety of the web3 packages, from
web3.eth to web3.utils. Observe the structural flow of the various functions in listing 7.2.
Next, let’s examine how you can use this information in your development of a Dapp.

CODING THE DAPP APPLICATION
Take the time to study the entire app.js code, because you’ll have to code a specific
one (app.js) for every Dapp. You can use listing 7.2 as the basis for coding app.js in
future Dapp development. When you want to code an app.js for a Dapp, armed with
the knowledge of web3 in this chapter, you can use the following guidelines:

 Define data for initialization.
 Instantiate the web3 object, and initialize it with a web3 provider. In this chap-

ter, the web3 provider is Ganache; in future chapters, it will be other Ethereum
client nodes.

 Link the contract, using its ABI (.json file) and the address at which it is
deployed.

 Code the access to the smart contract functions and interaction with the (web) UI.
 Add any supporting functions to facilitate Dapp testing and demonstration. In

listing 7.2, populateAddress() is such a function, displaying the account
addresses and their balances in the UI.

You’ve completed your exploration of the new Dapp introduced in this chapter, MPC,
and the side channel concept.

7.4.9 Extensions of MPC

Unlike the digital democracy (Ballot in chapter 4), marketplace (ASK in chapter 6),
and online auction (blind auction in chapter 6) models, the micropayment channel
model you learned in this chapter cannot be solved by traditional methods. I am sure
you are wondering whether the smart contract for MPC can be kept open instead of
self-destructing after a single claim. The smart contract for MPC can be extended to
handle other conditions and situations, such as

 Time duration-based channels
 Worker not claiming the payment within a certain time
 Extending the channel instead of closing it
 Premature closure of the channel by the organizer
 Inclusion of other items, such as nonce, in the message of the micropayment
 Bidirectional payments
 One-to-many channels
 Other application-dependent criteria

web3.utils used
to convert the
payment to wei

190 CHAPTER 7 Web3 and a channel Dapp

7.4.10 The relevance of the micropayment channel

When you have a large payment to transfer, you can still go through the regular finan-
cial system. Recently, JP Morgan Chase used the Quorum blockchain (http://
mng.bz/6AZD) to transfer a significant amount of value between its clients. This
transaction was an on-chain transaction. You may argue, of course, that you can use
regular on-chain transactions for commerce, payments, and purchases involving the
transfer of cryptocurrencies such as Bitcoin and Ethereum. But the difficulty with cur-
rent financial systems is in the transfer of micro values that are not significant to the
businesses but are valuable to the participant customers. This issue is addressed by off-
chain channels, which provide a convenient means for transferring smaller fractional
denominations (micropayments) combined with periodic or one-time synchroniza-
tion with the main channel. You used that pattern to solve the use case of global recy-
clable plastics cleaning in sections 7.4.4 and 7.4.5.

7.4.11 Other web3 packages of interest

Web3 is indeed a powerful package, as you can see from the discussions, and as
demonstrated in listing 7.2. Let’s study a few more of the web3 subpackages.

 In general, web3.eth lets an external application interact with a running Ethereum
node. Among its subclasses, web3.eth.personal deals with the creation and manage-
ment of accounts within a node, and also manages private keys in a key store, which
why it is called a personal API. web3.eth.personal.newAccount(), for example, cre-
ates a new account within a node. You may have noticed that in the MPC-app, I used a
web3.personal.sign() instead of web3.eth.personal.sign(). The latter requires a
password for more security, and a user has the option to use the extra security of a
password when signing from a common device.

 web3.eth.debug helps with debugging at block level. debug.dumpBlock(16), for
example, displays the block header details of block number 16. Thus, the debug
object of web3 enables you to peek into the blockchain, study it, and debug any issues
with the application by looking at the data recorded in the block.

 web3.eth.miner allows you to control the node’s mining operation and set various
block mining-specific settings. It’s quite simple to understand with an example.
miner.start() starts the mining operation; miner.stop() stops mining. You can also
use miner.start(6), in which six parallel threads are assigned to the mining opera-
tion. By the way, mining is the process of selection a new block for the chain.

 You can explore many more packages based on the problem you are trying to
solve. You can always install web3 (require("web3")) in your Node.js environment,
connect to the web3 provider in the Ganache test chain, and test the web3 commands
from the command line to learn how they operate before coding them into your
application.

http://mng.bz/6AZD
http://mng.bz/6AZD
http://mng.bz/6AZD

191Best practices

7.5 Retrospective
You got firsthand experience with digital signing in this chapter. Even though this fea-
ture was initiated in the application part (MPC-app) of the Dap, it used the block-
chain services for hashing and signing the message. Web3 accessed the hashing and
signing functions of the web3 provider in the Ganache node to accomplish these tasks
(hashing and signing). It is very important to note that you cannot use any hashing
method you wish and sign with anything you like. You are in a common blockchain
network; everyone has to speak the same language and follow methods offered by the
blockchain services. That’s what you did. You used the web3-provided SHA3 function
for hashing and used the private key of the account for signing with the help of web3
and MetaMask.

 The smart contract for the micropayment channel was quite simple, with a con-
structor and two public functions to validate the signature and to pay the claim. The
other functions in the smart contract accessed the underlying blockchain functions to
get you the signer of the micropayment message. Once again, you must use the stan-
dard functions to accomplish the tasks in a smart contract. Smart contracts run in a
sandbox (EVM in Ethereum) controlled by the blockchain infrastructure so that all
the participants have consistent outcomes when a smart contract function executes.

 The web3 API is an interface to the underlying blockchain services. Even for sim-
ple conversion from ether to wei and hexadecimal numbers to display numbers, you
use the web3 (utils) library function because the operations have to be consistent
among all participants.

 You don’t write thousands of lines of code or use composition and inheritance of
other pieces of code in the smart contract. The blockchain infrastructure provides
many services that are invoked with appropriate calls from the application.

 Finally, did you realize that all the entities—such as the organizer, smart contract,
worker, and verifier—can be autonomous machines and software programs, automati-
cally cleaning up the earth and collecting cryptopayments for the work? (What? No
humans in the loop?)

7.6 Best practices
Here are some best practices for payment channels:

 Examine traditional solutions before resorting to blockchain solutions. The
conventional banking system may work fine for many of your daily needs, such
as bill-paying for your credit card expenses. Where a traditional solution exists,
use it instead of overfitting a blockchain solution.

 Analyze a problem and the feasibility of a blockchain solution with real-world
scenarios before you start designing a Dapp.

 There are off-chain and on-chain operations in the blockchain ecosystem. Keep
the off-chain operations where they are, and link them to on-chain operations,
using appropriate methods.

192 CHAPTER 7 Web3 and a channel Dapp

 Use web3 library functions for any computations that are performed on the
blockchain node: the web3 provider. Be aware that the computations per-
formed on a blockchain node are in 256 bits, and your regular web application
may be running on a standard 64-bit server. A conversion may be needed. Use
the functions in the web3.utils package for that purpose, not your converters.

 The side channel concept is useful for addressing the scalability issue and for
lowering Tx times on the main channel.

 In general, you can remove the unwanted smart contracts deployed if you call
the selfdestruct() command inside a function. This feature is used in the
micropayment channel in the MPC example for closing the channel. Cleanup is
needed not only for plastics but also for smart contracts when their use is over.
Cleanup is necessary to prevent overloading the blockchain network.

7.7 Summary
 The micropayment channel concept is uniquely suited to services offered by a

blockchain.
 Digital signing of a message involves packing it to a standard size, hashing it,

and encrypting it with the private key of the sender.
 A smart contract, though immutable when it’s deployed, can be removed with

the selfdestruct() command.
 Web3 API exposes the services of the blockchain to the application layer.
 The concept of on-chain and off-chain operations complement the on-chain

and off-chain data covered in chapter 6.
 A smart contract can be a long-running permanent program as well as a fixed-

life program destroyed after a short-time use.
 The channel and side channel combination is a versatile instrument for solving

planetary-level decentralized applications involving unknown peers.

193

Going public with Infura

Blockchain is fundamentally a public infrastructure, like a highway or a road. Up to
this point, you’ve been using the Ganache test chain (Ganache on localhost:7545)
to deploy your applications, which is like learning to drive in a parking lot or proto-
typing an experiment in a lab. Now let’s move to the public roads to practice the
Dapp development skills you’ve learned. To drive on the public roads, you don’t
build the roads yourself; you use the existing infrastructure. Similarly, to deploy on
a public blockchain, you’ll need public infrastructure support, similar to cloud ser-
vices. I’ll introduce Infura (https://infura.io), a cloudlike service for hosting block-
chain nodes. Infura also provides a gateway to public networks such as Ropsten.

 In this chapter, you’ll take a significant step toward expanding the blockchain eco-
system and enhancing the development skills you have acquired so far: graduating

This chapter covers
 Exploring Ethereum nodes and network infrastructure

 Understanding services offered by infrastructure provider
Infura

 Defining a roadmap for deploying a Dapp on a public
network

 Deploying Dapps on Infura nodes and the Ropsten network

 Working with multiple decentralized participants

https://infura.io

194 CHAPTER 8 Going public with Infura

from hosting Dapps on a local test chain to a public chain. This step is indispensable to
enable decentralized participants to access and interact with your Dapp. You’ll learn
about working with Infura by deploying the familiar blind auction and micropayment
channel Dapps. For both deployments, Infura will provide scalable infrastructure for
hosting the nodes, and Ropsten will serve as the public network. The focus will be on
simulating multiple roles of participants in a decentralized network.

NOTE You must complete chapter 7 to get the most out of this chapter.

8.1 Nodes and networks
When we consider applications such as email and messaging, most of us see only the
user interface of the client (the email client, for example). Behind most applications
are servers—application servers that manage the emails, store them, format, and filter
them, and so on. Similarly, the nodes are servers for blockchain services, as you
learned in chapter 6. The nodes manage blockchain-related operations. A network
connects nodes. The operations on the network of nodes (chapter 1) are controlled
by a protocol or a set of rules. Figure 8.1 is replicated here from chapter 1 to refresh
the network-of-nodes concept.

Figure 8.1 A network of Ethereum nodes (adapted from figure 1.6)

In this chapter, these layers
will be realized by Infura hosted
Ethereum nodes.

Txs

Network

Network

TxsTxs

Txs

Block
Blockchain client

node

Blockchain client
node

Blockchain client
node

Transactions (Txs)
and blocks of Txs
broadcast through
the network.

One node
expanded

Decentralized applications (Dapps)

 Application logic on virtual machine
sandbox

Blockchain protocol implementation

Network and operating system

Computer systems hardware

Account
Account

195Infura blockchain infrastructure

In earlier chapters, you worked with nodes implemented by the simulated JavaScript
environment of the Remix IDE and the local test node in Ganache. These local test
environments are fine for prototyping purposes. But how do you graduate from test
node in Ganache to a production node in Ethereum? This move requires standing up
the Ethereum nodes, securing them as specified in the Ethereum protocol, and man-
aging the accounts and the requirements of the protocol. It typically is not the respon-
sibility of an individual developer to set up and manage blockchain nodes. Consider
this: Do you run an email server yourself to interact with your email client? No. Your
IT department does that for you. That is precisely the role played by Infura: it is a
secure, production-ready, scalable infrastructure to support your blockchain nodes in place of
your prototype local environment. It provides the nodes and API to access Ethereum
networks. Let’s learn to use the nodes and networks offered by Infura.

8.2 Infura blockchain infrastructure
Figure 8.2 provides an overview of the various services offered by Infura in support of
the expanding ecosystem of blockchain-based Dapps. In the bottom-left corner is the
familiar Ganache that you used as a test node for the Dapps in earlier chapters—your
blockchain development on training wheels. You can take the training wheels off with

Figure 8.2 Expanding blockchain ecosystem: Infura, Ropsten, and IPFS

Ropsten public network

Infura: blockchain as a service provider

Used in chapters 4, 6, and 7 for
account management and smart
deployment contract

IPFS to store
decentralized
off-chain data
of the Dapps

Smart contracts will
be deployed on Infura
provided Ethereum node.

Other networks:
Rinkeby, Gorli

IPFS

IPFSIPFS

IPFS
gateway on

Infura

Ganache
test chain

Infura
blockchain

API

196 CHAPTER 8 Going public with Infura

Infura. Most of figure 8.2 is about services offered by the Infura infrastructure, the pri-
mary function of which is to provision Ethereum blockchain nodes. It also makes avail-
able the endpoints and the API to connect to the nodes. A public network connects
these nodes. You’ll use the Ropsten network, as shown in figure 8.1. Infura also provides
other services, such as a gateway to connect to IPFS (Interplanetary File System) that can
serve as the decentralized store of some of the off-chain data. In this chapter, you’ll focus
on the endpoint for the Ethereum network and developing with the API to access it.

8.3 Going public with Infura
Infura is an infrastructure service for Ethereum Geth client nodes. (Geth is the acro-
nym for the Go-language-based Ethereum node.) There are two offerings of Infura:
one that is free but with a limited number of projects, and Infura+, a paid service that
offers more projects and resources, as well as technical support for deployments.
You’ll use only the free version of Infura in this book.

 Figure 8.3 shows the Infura opening page, displaying the services offered for Ethe-
reum blockchain node, IPFS for off-chain decentralized storage, and web3 provider.
Sign up for the free version of Infura to follow along with the exploration of its features.

8.3.1 Blockchain node as a service

Infura is a cloudlike infrastructure that enables the Ethereum node as a service. It also
facilitates linking with many public networks, such as the mainnet (using real ether),
Ropsten, and Rinkeby (using test ether); and provides a gateway for IPFS, a decentral-
ized file system. It offers an easy-to-use dashboard for creating Ethereum projects for
deploying smart contracts, configuring security settings for projects, and selecting the
public network to connect to.

Figure 8.3 Infura home page

197Going public with Infura

 Figure 8.4 shows Infura’s dashboard for creating projects. After you sign up on
Infura, you should be able to log in and open the dashboard by clicking Dashboard
and then clicking the Ethereum symbol in the left panel. You are allowed up to three
projects (in the free version), and you can name them appropriately. In the dash-
board, click Create New Project.

The creation of a project involves naming the project and optionally configuring its
security setting with a password. The project names and node configurations can be
viewed and edited after the project is created. In figure 8.4, I named the nodes or the
projects Role1, Role2, and Role3 to stand for the generic roles of the Dapps I may
deploy on them. You can think of each project as being equivalent to a Ganache node,
but a production version capable of driving a reasonable decentralized network of
participants. Even though I named the projects Role1, Role2, and Role3 to be agnos-
tic of any particular application, each project can host multiple smart contracts. You
can deploy many Dapps in a single project of Infura, depending on the expected load.
But this assignment of role names in different projects is for convenience of interac-
tion and testing, load balancing, and avoiding co-tenancy and separation of concerns
of Dapps. The blind auction smart contract of chapter 6 could be deployed on project
Role1, for example, and the MPC (micropayment channel of chapter 7) smart con-
tract could be deployed on the Role2 project of the Infura infrastructure. Infura also
adds useful features such as monitoring the health status and the load metrics (such
as the number of incoming requests) on the project nodes.

 When you have familiarized yourself with the new infrastructure of Infura, you’re
ready to modify some familiar smart contracts and prepare them for deployment on
Infura Ethereum nodes and the Ropsten network.

NOTE The Infura interface keeps changing as Ethereum technology evolves.
Be aware of the differences when you develop with Infura.

Click project name to Settings
and project details

Figure 8.4 Infura dashboard for project creation

198 CHAPTER 8 Going public with Infura

8.4 End-to-end process for public deployment
To deploy a smart contract on Infura and a public network such as Ropsten, you need
a few items, shown in figure 8.5. This roadmap begins from account generation with a
private-public key pair and ends with decentralized end-user interaction. In earlier
chapters, the accounts were precreated and made available through a test chain such
as Ganache. In this chapter, however, you are going to start from the beginning: gen-
erating the private key.

 Figure 8.5 shows the steps that will be described in detail in this chapter, using two
of the familiar Dapps: blind auction and MPC. I’ll use the blind auction to introduce
the public deployment process and a second Dapp MPC to repeat and reinforce the
steps learned with the blind auction Dapp. The figure illustrates the process of deploy-
ing a Dapp on Infura-provisioned Ethereum blockchain nodes that are networked via
the Ropsten test network. Although it’s possible to deploy the smart contracts of the
two Dapps (blind auction and MPC) on a single Infura project, I’ve chosen to use two
projects offered by Infura to illustrate the separation of unrelated projects.

Figure 8.5 Steps in deploying a Dapp on Infura

 BIP39

1. Obtain seed words
for deterministic
generation of
accounts for a wallet.

3. Import accounts
into wallet

2. Choose Ropsten public
test network.

4. Collect mock
Ether from
Ropsten faucet

6. Create projects/
nodes; deploy smart
contract of Dapp on
Infura; copy smart
contract address

Install
HDWalletProvider

5. Infura node does not
support wallet functions:
so install Wallet provider;
use Truffle for this.

Configure smart
contract and Dapp
application app.js

7. Update and configure
code to connect to smart
contract deployed in step 6

8. Deploy web applications
of Dapp and interact

Repeat for every
decentralized participant.

199End-to-end process for public deployment

8.4.1 Account generation and management

Ganache provided you an initial set of accounts with a balance of 100 test ether for
each. You used the 12 seed words to import these accounts into your MetaMask. When
you move from the test environment to development, you don’t have the Ganache test
chain, so you have to self-manage the account addresses yourself. Step 1 of figure 8.5
describes the details. To begin, you need to generate a seed phrase to serve as a mne-
monic for accounts. You’ll use the BIP39 (Bitcoin Improvement Protocol 39) method
(figure 8.6); a tool for generating it is available at https://iancoleman.io/bip39.

NOTE Mnemonic is a method of remembering facts and items—a memory
hook. Here is a common mnemonic for the order of planets: my very edu-
cated mother just served us nachos (Mars, Venus, Earth, Mercury, Jupiter, Sat-
urn, Uranus, and Neptune). In the case of a blockchain account, the
mnemonic maps to the numerical seed from which a deterministic set of
account numbers is generated. Deterministic means that the same account
sequence is restored every time you use this mnemonic.

Other information
....
....

1. Change this to 12

2. Choose English

3. Choose Ethereum

Mnemonic will appear here

Figure 8.6 BIP39 Mnemonic generation interface

https://iancoleman.io/bip39/

200 CHAPTER 8 Going public with Infura

Open the BIP39 tool, and do the following:

1 Choose the value 12 from the drop-down Generate a Random Mnemonic box
for the number of words in the mnemonic representing the private key.

2 Click English as the language of choice.
3 In the Coin box, select ETH.
4 In response to these selections, a mnemonic of 12 words appears in the mne-

monic box, representing a unique private-public key pair.
5 Copy the mnemonic or seed phrase into a file for use in later steps.

You can use this mnemonic to generate a deterministic set of accounts for a wallet every
time you restore it. Why should you use a mnemonic rather than actual accounts? A
mnemonic is easier to remember and less error-prone during transcription.

PRO TIP It’s a best practice to keep the mnemonics safe, secure, and private.
After you obtain the mnemonic, keep it safe in a password-protected file.

8.4.2 Choosing a network and importing accounts

You’ll use the Ropsten test network to connect the nodes that will host various execut-
able logic (smart contract) of a Dapp. Use MetaMask to choose a network (Ropsten,
in this case) to import accounts associated with the seed phrase mnemonic that you
generated. To enable your accounts on Ropsten, follow these steps:

1 Open MetaMask in your browser by clicking its icon.
2 Lock any open accounts by clicking their icons and then clicking Lock.
3 Choose the Ropsten test network (step 2 in figure 8.5) in MetaMask.
4 Click Import Using Account Seed Phrase to recover accounts (step 3 in figure 8.5).

The MetaMask page displayed is shown in figure 8.7, along with the interface for
entering the seed phrase (mnemonic) and a password. After you enter the data, it
restores (or reconnects to) accounts in the MetaMask interface, with only account 1
showing up initially. You can always create more accounts by clicking the Create
Account option in MetaMask.

 Now that you’ve set up the accounts, observe that the accounts have a zero bal-
ance. You need to replenish the account with some (test) ether for transaction fees
and payments for goods and services.

201End-to-end process for public deployment

8.4.3 Collecting ether from faucets

To operate on any public network, you need ether. Ganache provided you 100 ETH
for each account, but now you need to collect the test ether from a faucet—a means
by which you can request and obtain test ether for your development. Many test ether
faucets are available, but I recommend two of them: the MetaMask faucet
(https://faucet.metamask.io) and the Ropsten faucet (https://faucet.ropsten.be).
Figure 8.8 shows the Ropsten faucet, which has a limit of 1 ETH per account in 24

Click this to get to this interface.

Paste the mnemonic seed phrase
from the BIP39 tool here.

Figure 8.7 Restore account in MetaMask by using the seed phrase

From MetaMask,
manually connect to
faucet.ropsten.de;
that automatically adds
your account address here.

.

Figure 8.8 Obtaining ether
from the Ropsten faucet

https://faucet.metamask.io
https://faucet.ropsten.be

202 CHAPTER 8 Going public with Infura

hours. You’ll be graylisted (rejected) if you request more ether within 24 hours after
receiving ether.

 The MetaMask faucet is built-in (figure 8.9), and it gives you 1 ETH at a time, with
a maximum balance of 5 ETH per account. Try both methods now to get ether to your
newly created account(s). (Collecting ether is step 4 in figure 8.5.) Use both these
ether faucets, and keep collecting ether for your accounts every day so that you have
enough to run the MPC, blind auction, and other Dapps. Also, you can write a script
that collects ether for your accounts automatically! You can pay the transaction fees
with 1 ETH, but the Dapps in such a blind auction may require more ether—up to 5
for demo purposes. So you need to collect more ether. As a workaround, you can
always work with lower denominations (wei, dai, and so on) of ether for price and pay-
ments, but that option is not exciting.

Figure 8.9 MetaMask faucet for obtaining test ether

Click Deposit (or Buy)
button on MetaMask

Then click the
Get Ether button.

Click Request 1 ether
from faucet to add
1 ether to your
account balance

203End-to-end process for public deployment

8.4.4 Creating blockchain nodes on Infura

It is time to provision blockchain nodes on Infura. If you have not already done so
(section 8.3), you can sign in and create new projects with appropriate names. You
can always edit any of the attributes of a project, as well as delete and re-create a proj-
ect during the development phase. The blockchain nodes work on any of these public
networks: mainnet (real Ethereum public) and the Kovan, Ropsten, Rinkeby, and
Gorli test nets. Here are the steps to obtain the Infura-Ropsten endpoint address:

 Click the word Dashboard in the top-left corner of the Infura home page.
 Click the Ethereum symbol in the left panel.
 Click the name of the project you created (Role1, for example) and then click

Settings. You’ll see the screen shown in figure 8.10.
 Choose Ropsten as the network endpoint from the drop-down list of endpoints,

and copy the endpoint address that appears. Even though the Ropsten test net-
work is selected for your experimentation, it is simple to switch to other net-
works by choosing the network name from the endpoints drop-down list.

The endpoint address shown in figure 8.10 is required for configuring your smart
contract and the Dapp configurations so that they deploy and interact on the Infura
nodes and Ropsten network. In Figure 8.10, the endpoints are hidden so that you
don’t inadvertently use the nodes I created. You should protect the endpoints that you
use in your development.

Ropsten endpoint address

Project name

Figure 8.10 Infura node and network endpoint details

204 CHAPTER 8 Going public with Infura

8.4.5 Installing HDWalletProvider
An Infura node manages the blockchain gateway and infrastructure services. But for
security and privacy reasons, it does not support functions such as transaction signing
and managing accounts, so you need a software module for a wallet manager. The
Truffle suite includes a web3 provider called HDWalletProvider (http://mng.bz/oRar)
that includes wallet management. To install the HDWalletProvider module, you’ll use
the npm installer. Add a line of code to truffle-config.js in the contract directory to install
this module. This file is already included in the code we’ve provided:

const HDWalletProvider = require('truffle-hdwallet-provider');

You have other parameters to configure before you deploy the smart contract and web
application.

8.4.6 Configuring and deploying the smart contract

Smart contracts require a node, network, account addresses, and ether balance for
successful deployment. You configure these elements by adding to the truffle-config.js
that you used for the configuration to the Ganache local chain. You need to configure
these items for the smart contract deployment:

 The HDWalletProvider installation specified by require('truffle-hdwallet-
provider')

 The mnemonic representing the deployer’s account addresses for deployment
and withdrawing transaction fees

 The Ropsten-Infura Ethereum node endpoint address

The npm utility installs the HDWalletProvider. The Ropsten network and node pro-
vider for the deployment are configured by the mnemonic and the Infura-Ropsten
endpoint, as shown in the next listing. Truffle’s migrate command will use this config-
uration file for smart contract deployment.

const HDWalletProvider = require('truffle-hdwallet-provider');
mnemonic=’ add your mnemonic here,,';
module.exports = {
 networks: {
 ropsten: {
 provider: () => new HDWalletProvider(mnemonic,
 ➥ 'https://ropsten.infura.io/v3/…'),
 network_id: 3,
 gas: 5000000,
 …
 }
 },…

Listing 8.1 truffle-config.js

Configuration requiring the
installation of HDWalletProvider

Mnemonic representing
account address

Instantiation of HDWalletProvider
with mnemonic and Infura-Ropsten
endpoint

http://mng.bz/oRar

205End-to-end process for public deployment

You can deploy the smart contract by using the truffle migrate command with Rop-
sten as the network option (two dashes before network):

truffle migrate --network ropsten

This command does the following things:

 Compiles the smart contract
 Generates the application binary interface (ABI) code of the smart contract as

a JSON file in the build directory
 Generates the address of the smart contract
 Deploys the smart contract on the Ropsten network specified in the truffle-

config.js file

As the next step, you’ll configure and deploy the web application to access the smart
contract and interact with it.

8.4.7 Configuring and deploying the web application

To configure the web application, you’ll need these items:

 The network where the smart contract is deployed—This network is identified by its
name or number, such as mainnet identifier ID 1, ganache 5777, Ropsten is 3,
and so on. The MetaMask wallet lets you select the network you’d like to con-
nect, as shown in figure 8.11.

 A smart contract address—Within the net-
work, select the smart contract address
to access.

 The ABI—The ABI, an interface that
applications use to invoke or call a smart
contract’s functions, is generated as a
JSON file during the compilation of the
smart contract and is available in the
build directory.

The last two items are configured in the
app.js (src/js/app.js of the web application
part of the Dapp). When app.js is configured
with these details, the web application can be
deployed with npm commands. Upon success-
ful deployment of the smart contract and web
applications, you can interact with the Dapp
through web interfaces.

 So far, I’ve provided an overview of the
steps involved in the public deployment of a
Dapp. Let’s put the methodology into action.

Figure 8.11 Ethereum network choices for
MetaMask wallet

206 CHAPTER 8 Going public with Infura

In the next sections, I’ll demonstrate the steps in the public deployment on Infura
nodes and Ropsten network by using a familiar blind auction Dapp (section 8.5) and
reinforce it by using the MPC-Dapp (section 8.6).

8.5 Deploying BlindAuction-Dapp on Infura
The blind auction problem and a basic solution are covered in earlier chapters, so you
should be familiar with that Dapp by now. If not, review chapters 5 through 7. There
are three significant steps: setting up the environment, configuring and deploying the
beneficiary, and configuring and deploying bidders. This pattern is the same one that
you’ll follow in the development of other Dapps:

 Set up the environment.
 Configure and deploy different roles (beneficiary and bidder).
 Interact with the various web interfaces.

8.5.1 Setting up the blind auction environment

Let’s apply all the steps in the roadmap detailed in figure 8.5. Here are some prerequi-
sites before launching the demonstration. These steps should be familiar to you from
chapters 4–7 and the detailed discussions in section 8.4:

 Blind auction with codebase for two roles: beneficiary and bidder. Download it
from the chapter’s code files: BlindAuction-Dapp-Infura.zip. Extract it or unzip
it to extract all the files.

 Chrome browser with the latest MetaMask plugin (https://metamask.io)
installed.

 A 12-word seed phrase mnemonic generated by the BIP39 tool for each role.
You’ll have one mnemonic for each beneficiary, bidder1, and bidder2; save
these roles in a file called BAEnv.txt (listing 8.2) for quick reference for the
project parameters or automatic access for configuration later.

 Account address for each role. Restore or import the mnemonic for three roles
into MetaMask (one by one), and copy the account1 address for each role into
BAEnv.txt.

 A balance of at least 5 ETH in each of the accounts collected with a Ropsten
and/or MetaMask faucet. You can also receive ether in one account and send
them to other accounts.

 An Infura project to host the smart contract deployed by the beneficiary.
 Ropsten network endpoint addresses for the project, saved in BAEnv.txt. (See

section 8.4.4 for Ropsten endpoint on Infura.)
 Gather all these configurations in a BAEnv.txt file that contains the details given

in listing 8.2. Download the template BAEnv.txt from this chapter’s codebase,
and prepare all the data required, as discussed in this section. All the missing
data in the file should be filled with your setup details before you start the
exploration of the blind auction Dapp.

https://metamask.io

207Deploying BlindAuction-Dapp on Infura

NOTE The parameters in the environment can be set up in the .env file and
accessed as a variable of the .env instance. That will introduce a layer of
obscurity that is common in a production environment. For testing purposes,
you’ll use this ready reference in the xyzEnv.txt file that contains all the con-
figurations details, such as the mnemonic and Infura endpoints. This file also
contains argument values for interacting with the application.

BIP39 mnemonic generation tool:
 https://iancoleman.io/bip39/#english

Beneficiary details:
 1. Mnemonic or seed phrase from BIP39 tool:

 2. Account address Account1 on Metamask:

 3. Infura project name: Role1

 4. Infura endpoint address for Ropsten:
 https://ropsten.infura.io/v3/......

Bidder1 Details:
 1. Mnemonic or seed phrase from BIP39 tool:

 2. Account address Account1 on MetaMask:

Bidder2 details:
 1. Mnemonic or seed phrase from BIP39 tool:

 2. Account address Account1 on MetaMask:

BlindAuction contract address on deployment of smart contract from

➥ Beneficiary:
…

Keccak hash values for 1, 2 and 3: for bids
1
0xeef3620c18bdc1beca6224de9c623311d384a20fc9e6e958d393e16b74214ebe
2
0x54e5698906dca642811eb2f3a357ebfdc587856bb3208f7bca6a502cadd7157a
3
0x74bbb8fdcb48d6f82df6e9067fd9633fff4cab1103f0d5cb8b4de7214cbdcea1

8.5.2 Decentralized participants

In the blind auction problem, the beneficiary and bidders are distinct participants
with their own laptops or machines to configure and deploy the Dapp. But you’re
going to simulate all three roles on a single laptop by

 Switching the account in MetaMask every time you interact from a different
role: beneficiary, bidder1, or bidder2.

Listing 8.2 BlindAuction configuration parameters (BAEnv.txt)

This address is available
on the deployment of the

smart contract.

Used in the calculation
of hash for the bids

208 CHAPTER 8 Going public with Infura

 (Optional) Using different listening ports for the web server of the beneficiary
and bidders—3000, 3010, 3020 for quick identification of the various roles
when interacting. If you prefer, you can change the server port number in the
index.js file along with the message that is displayed.

After you download the blind auction code and expand it, you’ll see a graphical layout
of the directory structure (figure 8.12). The figure shows the different roles that you
identified early in your design process. The directory structure of the beneficiary has
both the usual components, auction-contract and auction-app, and the bidders have
only the auction-app web component.

Note the home directories of the beneficiary contract, beneficiary app, and the bid-
ders’ app in figure 8.12. You’ll have to navigate to these directories for the corre-
sponding deployments. Next, configure the code with the parameters of your
Ethereum blockchain network and node setup in the code. Follow these instructions
carefully, being sure not to skip any steps.

8.5.3 Configure and deploy the beneficiary account

You’ll begin by deploying the smart contract from the beneficiary account. This step
requires the installation of the HDwalletProvider module with the npm command:

cd Beneficiary/auction-contract
npm install

These commands install the HDWalletProvider module. You’ll see a series of messages
ending with some warning and zero vulnerabilities. Sometimes, depending on your
version of Truffle and npm, you may get some low warnings. That’s okay.

BlindAuction-Dapp

Beneficiary Bidders

auction-contract auction-app auction-app

Can be scaled to many
bidders; only two bidders
used for demo purposes

Same pattern for code
structure at this level

Only auction-app needed for bidders
because smart contract is launched
by beneficiary; bidders only access
the smart contract

Figure 8.12 Blind
auction directory
structure for public
deployment on Infura

209Deploying BlindAuction-Dapp on Infura

 Next, in the auction-contract directory, locate and edit the file truffle-config.js as
shown in listing 8.3, and enter two details: the mnemonic of the beneficiary and the
Ropsten-Infura endpoint that you saved in BAEnv.txt. Note that the mnemonic is
within single quotes and that the Ropsten-Infura endpoint string is appended to
https://, also within quotes. Save the truffle-config.js file.

const HDWalletProvider = require('truffle-hdwallet-provider');
beneficiary=' ';
module.exports = {
 networks: {
 ropsten: {
 provider: () => new HDWalletProvider(beneficiary, 'https:// '),
 network_id: 3,
 gas: 5000000,
 skipDryRun: false
 }
 },

 compilers: {
 solc: {
 version: "0.5.8"
 }
 }
};

After saving this configuration, deploy the smart contract by running the following
Truffle command from a terminal window of the beneficiary-contract directory:

truffle migrate --network Ropsten

The step will take more time than local deployment, and you will see messages on the
page indicating the progress of the simulated dry run of deployment. When the
deployment completes, you’ll see the actual deployment of the blind auction smart
contract on the Infura-Ropsten public network. As with any public infrastructure, this
process will take time, depending on the traffic on the network. Be patient, and try
the command again if it times out. I have experienced it timing out as well as failing
due to network traffic.

 This step will also create the BlindAuction.json ABI file in the build directory. Web
(and other external) applications use the ABI for accessing the smart contract functions.

 Part of the output from my deployment of the contract is shown in figure 8.13. In
the output, locate the smart contract address displayed; copy and store it in BAEnv.txt
for use later in the configuration of bidder web applications. Also, study the other items
that are output, such as account balance and final cost. Note that the application
src/js/app.js directly accesses the smart contract JSON (BlindAuction.json) file that was
created during the smart contract deployment process.

Listing 8.3 truffle-config.js

Add the beneficiary mnemonic
inside the single quotes.

Add the Infura-Ropsten endpoint.

Dry run simulates deployment of
contracts before real deployment

210 CHAPTER 8 Going public with Infura

When the contract is successfully deployed, navigate to the web application (auction-
app of the Beneficiary branch of figure 8.12). Update the Infura endpoint as URL in
the app.js, and save it. Install the required node modules, and start the web server
(Node.js server). The commands are shown here:

cd Beneficiary/auction-app
npm install
npm start

That step will start the beneficiary application with listening port 3000, and you’ll see
the message Auction Dapp listening on port 3000!

 Now use MetaMask to connect to the Ropsten network, where the BlindAuction
smart contract has been deployed. You can open a Chrome browser on localhost:3000
and reload. You’ll see the beneficiary interface. Click the MetaMask plugin; import
and restore the account by using the Import Account Using Seed Phrase command at
the bottom of MetaMask and by copying the mnemonic of the beneficiary from
BAEnv.txt and a password to operate the beneficiary wallet. Now you are all set with
the beneficiary.

 Next, you’ll configure the two bidders, each with their parameters. They are simu-
lating and representing two unknown peer participants: bidders in the blind auction
Dapp.

Address of deployed smart contract

Figure 8.13 Output from contract deployment

211Deploying BlindAuction-Dapp on Infura

8.5.4 Configure and deploy bidders

Configuring the bidders involves updating the web application app.js of each bidder.
I’ll deploy two bidders for demonstration purposes. In reality, all bidders will have the
same code but will be configured with parameters from their environment file at
BAEnv.txt that you created by filling out listing 8.2.

 From the base directory of the Dapp, navigate to Bidders/auction-app/src/js, and
edit the app.js file with any code editor of your choice. Update the smart contract
address as follows. The parameters are filled with values you saved earlier in BAEnv.txt
for bidder1. Save the file app.js:

App = {
 web3Provider: null,
 contracts: {},
 names: new Array(),
 …
 chairPerson:null,
 currentAccount:null,
 address:'…',
… // smart contract ABI is already embedded in the app.js provided

Save the app.js in the src/js directory, navigate back to the base directory of auction-
app (cd ../..), install all the required modules, and start the web server (Node.js
server). Update index.js file’s port number to 3010:

npm install
npm start

That step will start the bidder1 application with listening port 3010, and you’ll see the
message Auction Dapp listening on port 3010!

 Now you can open a Chrome browser on localhost:3010 and reload. You will see
the web interface of bidder1. Click MetaMask; import and restore the account by
using the Import Account Using Seed Phrase command at the bottom of MetaMask
and by copying the mnemonic of the bidder1 from BAEnv.txt and a password to oper-
ate the bidder1 wallet. Now you are all set with bidder1.

 Repeat the same steps to configure and deploy bidder2 in a different terminal win-
dow. Configure bidder2’s index.js so that the port number is 3020, as shown in the fol-
lowing code:

var express = require('express');
var app = express();
app.use(express.static('src'));
app.listen(3020, function () {
 console.log('Bidder 2: Blind Auction listening on port 3020!');
});

Now that all the participants are up and running, you can start the interaction.

212 CHAPTER 8 Going public with Infura

8.5.5 Interact with deployed blind auction Dapp
Before you begin the interaction of the bidders with blind auction Dapp, make sure
that MetaMask has restored the wallet in the respective participant and is ready to
transact. Also make sure that all the participant accounts have a balance of at least 4
ETH. You must be cognizant that you are role-playing for at least three participants:
the beneficiary, bidder1, and bidder2:

 Beneficiary—Web app for the beneficiary is bound to localhost:3000, and the
account address for Ropsten network is restored by its mnemonic.

 Bidder1—Web app for the bidder1 is bound to localhost:3010, and the account
address for Ropsten network restored by its mnemonic.

 Bidder2—Web app for the bidder2 is bound to localhost:3020, and the account
address for Ropsten network is restored by its mnemonic.

Unfortunately, every time you switch between participants, you’ll have to restore the
MetaMask wallet corresponding to that participant. You can avoid this switching if you
have different machines, one for each test participant.

 Figure 8.14 shows the interaction test plan with the time flow from top to bottom.
 You saw this interaction sequence in the local version of the blind auction Dapp in

chapters 5 and 6. This figure shows the same interaction sequence in a public environ-
ment. Every transaction takes significantly more time than the local version because
you are contending with network traffic and remote nodes on Infura and a public net-
work in Ropsten. Note that the interactions in figure 8.14 are numbered in the order
of execution:

 Actions 1, 4, 7, and 10 are by the beneficiary; they advance the phases of the
auction and finally close it.

 Action 2, by bidder1, happens in the Bidding phase. Input the Keccak hash
with an obscured one-time password from BAEnv.txt for a bid of 2 ETH and a
deposit of 3 ETH.

 Action 3, by bidder2, happens in the Bidding phase. Input the Keccak hash
with an obscured one-time password from BaEnv.txt for a bid of 1 ether and a
deposit of 3 ETH.

 Auction 5, by bidder1, happens in the Reveal phase. Reveal the bid of 2 ETH
and the one-time password 0x426526.

 Auction 6, by bidder2, happens in the Reveal phase. Reveal the bid of 1 ETH
and the one-time password 0x426526.

 Action 8 can be by anybody who wants to find out about the winner after the
auction ends.

 Action 9 is a withdrawal of deposit by any loser whose deposit has not been
returned.

213Deploying BlindAuction-Dapp on Infura

TIP You can use figure 8.14 as a guideline for the order of interactions,
which are also color-coded for different participants. If you can get two
friends from anywhere in the world to operate on the two bidder interfaces,
they can interact in parallel. In this case, there’s no need for the MetaMask
switching that happens in a single-machine simulation of interaction.

The network sequences the transactions as they arrive, and they may even have the
same timestamp if they get packed in the same block. The beneficiary page and one of
the bidder pages are shown side by side in figure 8.15, with buttons for various interac-
tions such as Advance Phase and Bid. Take a few minutes to review the interfaces and
familiarize yourself with the buttons. Now you are ready to run the sequence of the
operations in the order specified in figure 8.14 and the list of actions preceding it.

Advance phase

Place blind bid
+ deposit

Place blind bid +
deposit

Beneficiary Bidder 1 Bidder 2

Advance phase

Reveal bid +
password

Reveal bid +
password

Bidding started

Reveal started

Advance phase

Hash for 2 ETH
+deposit of 3 ETH

Hash for 1 ETH
+deposit of 3 ETH

2 ETH
+ one-time password

1 ETH
+ one-time password

Auction ended

Close auction

These can operate
in parallel.

1

2 3

4

5 6

7

10

Withdraw

Loser withdraws
deposit

9

Show winning bid

Display winner +
winning bid

8

Figure 8.14 Interaction plan
for a public blind auction Dapp

214 CHAPTER 8 Going public with Infura

The interaction begins with the beneficiary advancing the phase to Bidding. Wait for
the MetaMask to confirm your transaction; also wait till you get a notification in the
top-left corner of the page (figure 8.16).

Let the bidders place the blind bid and the deposit. The hashed values for 1 ETH and
2 ETH are provided in BAEnv.txt, repeated here for convenience. The second param-
eter value of 3 ETH is the deposit:

Bidder 1: (a bid of 2 ETH and deposit of 3 ETH)
0x54e5698906dca642811eb2f3a357ebfdc587856bb3208f7bca6a502cadd7157a
3
Bidder 2: (a bid of 1 ETH and deposit of 3 ETH)
0xeef3620c18bdc1beca6224de9c623311d384a20fc9e6e958d393e16b74214ebe
3

After the bidders—two of them, in this case—place their blinded bids from their
machines, the beneficiary advances to the reveal phase by clicking the Advance Phase
button in the interface. Wait for the reveal notification to show up in the left corner.
Then the bidders reveal their bids along with the one-time password used in obscur-
ing or hashing the bids earlier in the Bidding phase. The one-time password I used is
0x426526 (that is zero X, indicating that the number that follows is in hexadecimal
encoding):

Bidder’s interface

Beneficiary’s interface

Figure 8.15 Beneficiary’s and bidders’ interfaces

Figure 8.16 Notification of Bidding phase

215Deploying MPC-Dapp on Infura

Bidder 1:
2
0x426526
Bidder 2:
1
0x426526

After that, the beneficiary advances the phase to end the auction by clicking the
Advance Phase button. By the design of this experiment, you know that bidder1 won
the bid. Bidder2 can verify this by clicking the Show Winning Bid button, which shows
the winner’s address and bid in wei in the bottom-left corner of the page. Then bid-
der2 can click the Withdraw button to withdraw the deposit. The balance of the win-
ner’s deposit is returned after the winner is decided.

 When these interactions are complete, you can verify the balance in all three
accounts and make sure that they are the original balance minus the execution cost. I
am not giving absolute numbers because these may vary with the account balances at
the time you begin testing. The beneficiary can close the auction. Also, you can try
other operations, such as Bidding, Reveal, or Advance Phase; they should error out
because the contract has been closed. The nodes on Infura, the Ropsten network, and
your three account addresses still exist even after the application has been closed. You
may reuse these resources in the next exploration of MPC-Dapp in which you can
reinforce the concepts of public deployment that you learned in this blind auction
example. Let’s follow the same steps to deploy and test MPC.

8.6 Deploying MPC-Dapp on Infura
Let’s now apply the steps in the roadmap of figure 8.5 to the micropayment channel
problem. The MPC is about a smart contract and an off-chain channel for digital micro-
payment incentives for massive plastics cleanup. There are two main roles: the orga-
nizer, who deposits an escrow in a smart contract for payments, and any participant
(worker) who cleans up plastics in bins and collects micropayments for the bins col-
lected. The MPC problem and a solution for it deployed on a local chain are covered
in chapter 7. This exploration of MPC reinforces the steps for preparing, configuring,
and deploying a Dapp on Infura-provided nodes with a public network such as Ropsten.

8.6.1 Setting up the MPC environment

Review the prerequisites before launching into the MPC demonstration; these prereq-
uisites correspond to steps 1 through 8 of figure 8.5 and set up the public blockchain
nodes on Infura and Ropsten to deploy the Dapp for public interaction. You can reuse
the mnemonic, accounts (with their balances), and Infura nodes you created for the
blind auction application. This exploration requires these items:

 MPC with codebase for two roles: organizer and worker. Download it from the
chapter’s code files: MPC-Dapp-Infura.zip. Extract it or unzip it to extract all
the files.

216 CHAPTER 8 Going public with Infura

 Chrome browser with the latest MetaMask plugin (https://metamask.io)
installed.

 A 12-word seed phrase mnemonic generated by the BIP39 tool for each role.
You’ll have one mnemonic each for organizer and worker; save them in
MPCEnv.txt (listing 8.4) for quick reference for the project parameters or auto-
matic access to configuration later.

 Account address for each role: restore or import the mnemonic for two roles
into MetaMask (one by one), and copy the account1 address for each role into
MPCEnv.txt.

 A balance of at least 5 ETH in each of the accounts collected with a Ropsten
and/or MetaMask faucet.

 An Infura project. Reuse the project you created on Infura with a Ropsten end-
point address. See section 8.4.4 for details on Ropsten endpoint on Infura
node.

 When you complete the prerequisites, you should have an MPCEnv.txt file that
contains the details given in listing 8.4. Download MPCEnv.txt from this
chapter’s codebase, and fill in all the data required for your demo. All the
blank data except the smart contract address should be filled in before you
start the demo of the MPC-Dapp. Make sure that the .env file is secured and
password-protected.

Organizer details:
 1. Mnemonic or seed phrase for organizer:

 2. Account address Account1 on MetaMask:

 3. Infura project name: Role2

Infura end point address for Ropsten: https://ropsten.infura.io/v3/
 ...

Worker Details:
 1. Mnemonic or seed phrase from BIP39 tool:

 2. Account address Account1 on MetaMask:

MPC smart contract address obtained during deployment:
 ...

This demo is simulated on a single machine by switching the account in MetaMask
every time you interact from a different role: organizer and worker. I have also used
different listening ports for the web server of organizer and worker—3000, 3010 for
quick identification of the different roles: organizer and worker when interacting.

Listing 8.4 MPC configuration parameters (MPCEnv.txt)

https://metamask.io

217Deploying MPC-Dapp on Infura

 After you download the MPC code and extract it, you will see the directory struc-
ture, as shown in figure 8.17. The directory structure is expanded to include the dif-
ferent roles that you identified early in your design process. The directory structure of
the organizer has both the usual components, MPC-contract and MPC-app, and the
worker has only the app component, MPC-app. Configure the code with the parame-
ters of the Ropsten network and Infura node setup in the code. Note that you are fol-
lowing the same steps you used in deploying the blind auction Dapp. Follow these
instructions carefully, and don’t miss any steps.

8.6.2 Configure and deploy the organizer

You’ll follow the same steps as in the blind auction deployment, but with certain MPC-
specific configurations, such as providing the worker’s address as a parameter for the
smart contract deployment and channel escrow deposit by the organizer. You’ll need a
Infura Ropsten endpoint for deploying the MPC smart contract. You’ll also need two
sets of Ropsten accounts, and ports on your local machine, one set representing the
organizer (sender of micropayment) and the second one representing the worker-
receiver. You’ll use these items to configure the MPC-contract directory:

 Worker (receiver) address in the migrations/2_deploy_contracts.js (listing 8.5)
 Setup escrow deposit or channel balance in migrations/2_deploy-contracts.js

(listing 8.5)
 HDWalletProvider address with Infura endpoint and account mnemonic of the

organizer in truffle-config.js (listing 8.6)

MPC-Dapp

Organizer Worker

MPC-contract MPC-app MPC-app

Can be scaled to many workers;
only one worker used for demo purposes

Same pattern for code
structure at this level Only MPC-app needed for

workers because smart
contract is launched
by organizer

Figure 8.17 Directory structure of MPC for public deployment on Infura

218 CHAPTER 8 Going public with Infura

var MPC = artifacts.require("MPC");

module.exports = function(deployer,networks,accounts) {
 …
 if(networks=='ropsten'){
 var receiver='0xd47fEd9f17622d64e154C3af70eE18C4920Bc9B5';
 var balance=1000000000000000000;
 deployer.deploy(MPC,receiver,{value:balance});
 }
};

The parameters you set in 2_deploy_contracts.js, the receiver or worker’s address, and
the channel balance or escrow deposit are passed on to the smart contract when the
constructor deploys it. That sets up the channel and the value the channel holds for
micropayments. This value of channel balance is displayed in the web interface along
with the balances of the organizer and the worker. You have only 1 ETH available for
work, so the micropayments cumulatively have to be within this amount. Save the
updated 2_deploy_contracts.js file.

 Now update the truffle-config.js to include the organizer’s mnemonic and the
Infura endpoint for the organizer to deploy the smart contract. Listing 8.6 shows the
file. This file is the same as the one for the blind auction except for the variable
names. You can get the parameters from the cheat sheet MPVEnv.txt that you created
earlier. Now you see the advantage of collecting the environment parameters and hav-
ing them ready to use. Save truffle-config.js after the update.

organizer=' ';
module.exports = {
 networks: {
 ropsten: {
 provider: () => new HDWalletProvider(organizer, 'https:// '),
 network_id: 3,
 gas: 5000000,
 skipDryRun: false
 }
 },
…
};

Navigate to the base directory MPC-Dapp, and run the following commands to install
the required modules and to compile and migrate the smart contract on the public
Ropsten network. The second command will take some time to complete because you
are deploying on the Infura infrastructure and public Ropsten test network:

npm install
truffle migrate --network ropsten

Listing 8.5 2_deploy_contracts.js

Listing 8.6 truffle-config.js

Change the
worker’s
account
address from
MPCEnv.txt.

Channel balance or escrow deposit
1ETH = 1000000000000000000

Add the organizer’s mnemonic.

Add the Infura-Ropsten endpoint.

The dry run simulates deployment
of contracts for any issues.

219Deploying MPC-Dapp on Infura

You will get messages about the successful completion if everything goes well. Some-
times, if traffic is too high, the deployment command may time out; be aware of this
possibility. Then repeat the truffle migrate command until the deployment of the
smart contract is successful.

 Now navigate to MPC-app of the organizer directory. Start the web server (Node.js
server). That step will start the organizer application with listening port 3000:

npm install
npm start

You’ll see the message MPC Dapp listening on port 3000! Now you can open a
Chrome browser on localhost:3000 and reload. You will see the organizer’s interface.
Click MetaMask; then import and restore the account by using the Import Account
Using Seed Phrase command at the bottom of MetaMask by copying the mnemonic of
the beneficiary from the file MPCEnv.txt and a password to operate the beneficiary
wallet. You’ll see the familiar web interface of the organizer, shown in figure 8.18.
Note the smart contract address shown in the top-left corner, enabling configuring of
the workers. You can copy this address into the MPCEnv.txt file to configure the
worker application. You can also see the balances of the accounts in my deployment.
Yours may be different.

Now you are all set with deploying the organizer. The interaction details for the entire
MPC-Dapp are shown in figure 8.19. In this figure, you can observe that organizer and
worker interaction are sequential. In other words, the organizer keeps sending the
micropayments off-chain as the bins come in, and after all the signed micropayments
off-chain are issued, the worker claims one accumulated payment.

 Let’s assume that worker has completed 0.1, 0.1, and 0.1 bins’ worth of plastics,
resulting in cumulative micropayments of 0.1, 0.2, and 0.3. Enter the micropayments
in the organizer’s interface one by one. These steps are all the interaction you’ll have

Figure 8.18 Organizer’s interface

Smart contract
address

Three balances

220 CHAPTER 8 Going public with Infura

with the organizer, and the resulting page will be as shown in figure 8.20. The num-
bers will be different for you. Save the last signed message for worker interaction.
Next, you’ll configure the worker or receiver of micropayments with their parameters.

8.6.3 Configure and deploy the worker

Configuring the worker and deploying involves working with the Worker path of the MPC-
Dapp that only has the MPC-app component. Recall the directory structure in figure 8.17.
Update src/js/app.js of MPC-app of the Worker directory with two parameters—the
address of the smart contract and the ABI of the smart contract (included in app.js):

Deploy Payment
Channel SC

Organizer Worker

Pay and sign
micropayment

Claim payment

0.3 ETH
+ signature
in micrpayment

1

3

4

2

0.1, 0.1, 0.1 bins

0.1, 0.2, 0.3 ETH

Destroy payment
channel SC

Return escrow balance
 to organizer

Off-chain :
Collect plastic
recyclables

Figure 8.19 Interaction plan
for the organizer and a worker

Figure 8.20 Three cumulative micropayments: 0.1, 0.2, and 0.3 ETH

221Deploying MPC-Dapp on Infura

App = {
 web3: null,
 contracts: {},
 address:'0xb86709182892a6e28dedfF3cB591DAF9dCFfcF24',
 network_id:3,

 …

Save the app.js, navigate to the MPC-app directory of the worker, and run the follow-
ing commands. By now, you should be familiar with the routine:

npm install
npm start

After a successful deployment of the worker application, you can open a Chrome
browser on localhost:3010 with the MetaMask wallet. Make sure to restore the worker
account on MetaMask with the seed phrase mnemonic of the worker. You’ll see the
familiar page shown in figure 8.21. Enter 0.3, the cumulative micropayment, and the
signed message you saved from the interaction with the organizer. Click Claim pay-
ment, and when you confirm in MetaMask, you see that a transaction is pending. After
the transaction is confirmed, you see the notification about the transfer of the amount
to the worker account. After that, the smart contract channel is closed. Figure 8.21
shows that the Worker’s balance field is empty because the smart contract is no longer
available to answer the balance query.

That completes the demonstration of the MPC-Dapp. I have not elaborated on the out-
comes of MPC because they were discussed in detail in chapter 7. The goal of this chap-
ter was to learn the steps of deploying on the public chain and an Ethereum node
infrastructure provided by Infura. We did that for two different types of interactions:
hashed and blinded inputs and decoding, using a one-time password (blind auction
Dapp) and micropayment and off-chain side channel (MPC-Dapp).

MPC smart contract
address from MPCEnv.txt

Figure 8.21 Worker interaction with single cumulative micropayment

222 CHAPTER 8 Going public with Infura

8.7 Retrospective
Deploying on public infrastructure is a multifaceted process, but a review of the road-
map shows that it is about setting up blockchain nodes and configuring the system.
These steps in the roadmap are necessary to move from testing with a local blockchain
to a public chain, where you are operating among thousands of other participants
unknown to you.

 Dapp deployment (truffle migrate command) and confirmation of transactions
took a longer time than local deployments. This delay is understandable because you are
among many peer participants and their transactions. You got to experience firsthand
users’ concern about transaction confirmation times on real blockchain networks.

 You may think that creating Ethereum blockchain nodes on infrastructure such as
Infura is once again going back to a centralized system. But this setup is experimental;
in a real production, environment participants will host the projects on nodes that
may reside on their premises or in their cloud environment.

 The economics of managing the ether or cryptocurrency balances for the applica-
tions is a mostly unexplored area. You may wonder why you need this cryptocurrency
for the deployment of Dapps and interaction with Dapps. All your previous develop-
ment did not need these accounts and balances! Remember that you are in a decen-
tralized realm with unknown peers, especially in a public network. The
cryptocurrency or ether is the cost of trust and security in a decentralized system,
thwarting the misuse of open resources.

8.8 Best practices
Blockchain is inherently public. Consider the blockchain to be a part of the solution
for decentralized public use cases. Think of newer application domains and roles,
users, and demographics that have not been touched by the current applications.

 Similar to how you used Ganache, set up a permanent three-project, three-roles
environment on Infura, and reuse the setup for your development and learning.
Reuse the same accounts for replenishing the ether from the faucets. Ether faucets
can give you only a limited amount per day or an amount decided by the balance in
your account. Keep collecting ether every day, the way you get an allowance or per-
diem pay. You can always buy any amount of real ether to transact on the Ethereum
mainnet, so why waste real ether on test development?

 Keep the mnemonics generated safe and secure. Don’t give out the mnemonics.
Also, keep the same account addresses during testing and development—at least three
and one more as a bank for ether. Keep reusing the same accounts for the various roles
during Dapp development. This kind of reuse is convenient for learning purposes.

223Summary

8.9 Summary
 The public infrastructure of Infura that provisions Ethereum blockchain nodes

as a service enables public deployment of your Dapps.
 A roadmap in this chapter provides steps for deploying a Dapp on a public

infrastructure. These steps include obtaining parameters for environment
setup, configuring the various components with parameters, deploying the
smart contract, performing package-based management of the web server, and
creating an interaction plan for testing the Dapp.

 Two Dapps—blind auction and MPC—illustrate how to configure Dapps for
public deployment.

 When you operate on a public network, you need the cryptocurrency allowed in
that network. That is a cost of trust.

 MetaMask wallet helps with account management. As in real life, you switch
accounts for different purposes.

Part 3

A roadmap and
 the road ahead

Part 3 focuses on the expanding Ethereum ecosystem, covering tokenization
of assets, standards, test-driven development; a roadmap that captures the con-
cepts, tools, and techniques introduced in parts 1 and 2; and the opportunities
that lie ahead. The concepts of fungible and non-fungible tokens and standards
are presented with a real estate token development. You’ll learn to develop
JavaScript-based test scripts. I show an intuitive approach to write JS tests and
run them by using Truffle test frameworks and commands. I discuss a roadmap
and provide a blockchain-based solution to address inefficiency in a certificate
program I manage at my institution. I conclude by reviewing many open issues
in blockchain technology that the community is actively engaged in solving. Per-
haps you can contribute too. You should be looking for opportunities to use
blockchain’s trust and integrity features to solve problems.

 Chapter 9 focuses on two areas of high interest in the blockchain field: tokens
and coins. You’ll learn to code a non-fungible token application (RES4-Dapp) as
an ERC721 standard token. Chapter 10 is about writing test scripts. Automating
testing is explained by using it(), describe(), and beforeEach() primitives with
three sample scripts to test Counter.sol, Ballot.sol, and BlindAuction.sol. In chap-
ter 11, I provide a roadmap to help you navigate your Dapp developments. I also
illustrate the use of the roadmap with an application from my domain of interest:
educational credentialing (DCC-Dapp). Chapter 12 provides an overview of the
road ahead for blockchain by discussing issues and solutions unique to block-
chain applications.

227

Tokenization of assets

A smart contract can tokenize any asset, tangible (real, financial) or intangible
(brand, performance). Tokenize means representing the asset with a digital unit that
can be transferred, traded, exchanged, regulated, and managed like fiat currency
or cryptocurrency. Examples of assets are computing artifacts, files, and photos on
digital media, real estate, collectibles, stocks, and even intangible concepts such as
security and performance. The asset can be virtual, physical, or imaginary! Crypto-
Kitties is an example of the successful tokenization of an imaginary pet family
launched on the Ethereum blockchain. You can buy, trade, and breed CryptoKitties
as digital pets. You can view many other working tokens on Etherscan. Beyond the

This chapter covers
 Developing smart contracts for tokenization

of assets

 Reviewing the Ethereum improvement proposal
process and standards

 Understanding fungible and non-fungible tokens

 Exploring ERC standard tokens ERC20 and
ERC721 for fungible and non-fungible assets

 Designing and developing of ERC721-compliant
real estate token

228 CHAPTER 9 Tokenization of assets

hype of digital pets, tokenization has the potential to be a disruptive, visible aspect of
blockchain innovation.

 Tokenization of assets further helps with the following:

 Standard management of asset behavior with smart contract features
 Streamlined recording and sharing of information about assets via blockchain

distributed ledger technology (DLT)
 Traceability of goods and services, such as in supply chains
 Faster confirmation of business transactions such as the sale of real estate (a few

hours instead of a few months)
 The ongoing digital transformation in many businesses
 Commoditization and monetization of assets
 Development of new instruments for online trading of assets
 Development of innovative application models

Overall, tokenization is expected to boost the broader applicability of blockchain
technology.

 In chapters 6–8, the focus was on end-to-end decentralized application develop-
ment. In this chapter, you’ll explore the broader impact of blockchain technology
with the introduction of the token concept. You’ll learn about standards built around
tokens and about fungible and non-fungible tokens. A new smart contract, the RES4
token, demonstrates the token concept for transforming real estate assets into crypto-
assets. You’ll design and develop a RES4 Dapp, which illustrates how to take advantage
of the blockchain features of trust, immutable recording, and intermediation for effi-
cient transactions of real estate assets.

 Tokens need to comply with standards to facilitate seamless interaction among dif-
ferent token applications. This situation is similar to the way that different fiat curren-
cies behave in financial markets and exchanges. Ethereum provides these standards
through its protocol improvements initiated by the Ethereum Improvement Proposal
(EIP) process. The RES4 is not just another smart contract; it will be designed as an
Ethereum standard token to show you how to develop a token that is compliant with
Ethereum standards.

9.1 Ethereum standards
Any time a technology grows exponentially in many directions, with deep and broad
impact on all walks of life, from politics to pet shops, we need to pay attention to
bringing some order to the situation. This expectation is not unusual. Take a look
back at when operating systems became a big deal. Portable Operating System Inter-
face (POSIX) standards were introduced for interoperability among operating sys-
tems. The Internet Engineering Task Force (IETF) was established for defining
internet standards through requests for comments (RFCs). Commercial flights can
land in any compliant airport in any country because of aviation standards—those of
the International Organization for Standardization (ISO). Standards bring order,

229Ethereum standards

safety, regularization, and clarity to any field. They are especially imperative for a
nascent and high-interest technology such as blockchain. Let’s explore a little bit of
token history. During the years since the advent of Bitcoin and smart contracts, many
standalone coins and tokens emerged. This expansion gave rise to many issues and
questions about a token such as

 What does it represent?
 What is the value of this token, and how do you assess the value?
 What can you do with it?
 Is it an investment or utility token?
 Can you exchange it for another type of token or for any fiat currency?
 Is it fungible or non-fungible?
 Is it limited in number?

These are concerns not only for you and me but also for the U.S. Securities and
Exchange Commission (SEC) and regulatory agencies that are trying to regulate the
cryptocurrency industry to protect investors from fraudulent products and invest-
ments. The Ethereum community continually addresses these issues through a process
that includes development, discussion, and introduction of standards. It has developed
a method to improve the protocol that underlies its blockchain and provides standards
for advancing application development.

9.1.1 Ethereum improvement proposal

Let’s examine how standards evolve in Ethereum. A standard is developed under the
EIP (https://eips.ethereum.org/EIPS/eip-1) to promote improvements in the Ethe-
reum ecosystem. The EIP is a means to manage the protocol specification, improve-
ments, updates, client APIs, and contract standards. EIP handles issues in different
categories, including

 Core or core Ethereum protocol
 Network or network level improvement
 Interface or interfaces such as ABI, RPC
 Ethereum request for comments (ERC) or application-level conventions and

standards

9.1.2 ERC20 token standard

As an immediate response to introduction of Ethereum, numerous cryptocurrency
tokens emerged to represent various services and businesses. The ERC20 standard
interface was introduced so that Ethereum-based cryptocurrency tokens follow a stan-
dard and are compatible. The ERC20 standard specifies a set of rules that allows the
tokens to interact with one another, exchange with one another, and transact on the
Ethereum network.

https://eips.ethereum.org/EIPS/eip-1

230 CHAPTER 9 Tokenization of assets

 The OpenZeppelin organization (https://openzeppelin.com) is an active commu-
nity that supports Ethereum protocol. Its improvements and token standards are dis-
cussed at https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20.
Here is a partial definition of the ERC20 interface:

contract ERC20 {
 function totalSupply() public view returns (uint256);
 function balanceOf(address tokenOwner) public view returns (uint256

 balance);
 function allowance(address tokenOwner, address spender) public view

 returns (uint256 remaining);
 function transfer(address to, uint256 tokens) public returns

 (bool success);
 function approve(address spender, uint256 tokens) public returns

 (bool success);
 function transferFrom(address from, address to, uint256 tokens)

 public returns (bool success);
 //events
 event Transfer(address indexed from, address indexed to,

 uint256 tokens);
 event Approval(address indexed tokenOwner, address indexed spender,

 uint256 tokens);
 }

The ERC20 definition also includes the token name, token symbol, and an attribute
(decimal) that specifies how to represent a fractional of a token—the scale factor. To
create and deploy a token for an asset or utility compliant with the ERC20 standard,
you'll implement a smart contract with the functions required by the ERC interface:

contract MyToken is ERC20 {

// implement the functions required by ERC20 interface standard
// other functions…
}

Hundreds of ERC20-compliant tokens have been deployed, and you can see them on
Etherscan. These tokens piggyback on the Ethereum network and can operate with
the same address as your Ethereum node. More important, theoretically, an ERC20
token can be exchanged for any other ERC20 token on crypto exchanges. This notion
opens a whole new world for Dapps!

 Here is a view of ERC20 token Txs on the regular Etherscan (https://etherscan
.io/tokens), shown in figure 9.1. It shows two different ERC20 tokens transferred
from one account to another. You can also locate many such transfers by exploring a
token tracker for ERC20 tokens. The link here for the Tx is shown in figure 9.1. It
shows the history of the Tx (http://mng.bz/nzYg). Click it and view the record of the
Tx to understand the details of a token Tx.

http://mng.bz/nzYg
https://openzeppelin.com
https://etherscan.io/tokens
https://etherscan.io/tokens
https://etherscan.io/tokens
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20

231Ethereum standards

NOTE At the time of this writing, ERC20 is being replaced by ERC777, an
improved version fungible token standard.

9.1.3 Fungible and non-fungible tokens

An ERC20 token is like currency, letting users buy certain utility or services by spend-
ing the tokens. There is an ERC20 token for paying for energy consumption in the
Grid+ application, for example. One ERC20-compliant token of a kind (such as the
REP token of Augur) is exchangeable with a token of the same kind, which means
that it is a fungible token (FT).

 A dollar bill can be exchanged with another dollar bill, so it is fungible. When a
token represents an asset or a pet, like a real-world puppy, and it grows into a super
dog that wins a world competition, this token value would appreciate enormously.
Pokémon cards are another example. How about baseball cards and real estate? In
these cases and many more practical examples, a given token value may appreciate or
depreciate depending on many factors. This type of token is known as a non-fungible
token (NFT). In this case, tokens are of the same kind, but they are not equal in value
and so are not exchangeable for equal value.

DEFINITION A fungible token (FT) is identical to every other token in value
for the same class of tokens. One FT is equally exchangeable with any other
within the given class.

DEFINITION A non-fungible token (NFT) is a unique token within given token
class. An NFT is not equal to any other NFT within the given class.

Figure 9.2 further illustrates the concepts of fungible and non-fungible.
 As in figure 9.2, every ordinary dollar bill has the same value as every other dollar bill.

This equation applies to 1 ETH and 1 Bitcoin, which are said to be fungible items. One
item is replaceable by any other item of the same kind. But one pet dog is not the same
as any other pet dog in the world. The pet dog Milli is not the same as the pet dog Riley!

ERC20 token transfer

From externally owned account (EOA)
to contract account

Figure 9.1 Transaction with ERC20 token transfers

232 CHAPTER 9 Tokenization of assets

In the highly popular Cryptokitties (https://www.cryptokitties.co) Dapp, a token
(symbol CK) is used to represent a kitty, and the rules for its creation, life cycle, breed-
ing, and so on are written into the immutable Ethereum blockchain and the smart
contracts supported by it. At predetermined times, a certain number of new tokens
are released and auctioned off to raise new funds. Assets—kitties, in this case—also
appreciate or depreciate (value) based on demand and individual characteristics.
Every asset is unique; one asset is not the same as the other. The kitties are not inter-
changeable. So these tokens are also non-fungible.

 The Ethereum community designed a fungible and non-fungible token and a stan-
dard for each type. ERC20 is the fungible token, and thousands of exchangeable
ERC20-compliant cryptocurrencies were deployed. ERC721 is the standard for a non-
fungible token, and Cryptokitties, where it originated, made it famous.

 Fun aside, you’ll have to consider the ERC721 token model seriously. ERC721
applies to a broad range of non-fungible assets. It can represent a lot of use cases,
from stocks and real estate to collectible art. Consider a ERC721 token to be a model
for timeshare and rental properties—maybe even a piece of land on Mars. The possi-
bilities are endless.

 In section 9.2, you’ll explore an ERC721-compliant token representing real estate
assets.

Figure 9.2 Fungible vs.
non-fungible assets

Fungible

1 dog Milli is not equal to
other dog. Milli is not Riley!

Non-fungible

1 dollar is equal to
every other 1 dollar

1 ETH is equal to
every other 1 ETH.

1 Bitcoin is equal to
every other 1 Bitcoin.

https://www.cryptokitties.co

233RES4: Non-fungible real estate token

9.2 RES4: Non-fungible real estate token
Property ownership—including land ownership, housing, and real estate—has been a
tricky problem everywhere on earth since the dawn of history. Many wars and feuds
are about land assets. Let’s consider real estate to be a non-fungible asset and then
design and develop a token Dapp for it. It is worthwhile to note that even though real
estate is the asset of focus in this exploration, the token we design stands for numer-
ous other assets in many businesses, as well as in socioeconomic, cultural, and art
applications.

 We’ll begin with a problem statement and then apply the design principles
(appendix B) to design and develop the application. This real estate token will be
called RES4 (real estate for all).

PROBLEM STATEMENT Design and develop a real estate token decentralized
application representing new real estate developments in a town. The town
supervisor can add a piece of real estate as an asset (RES4 token) and at the
same time assign it to an owner. This task is accomplished by the process of
the creation of the RES4 token. (Assume that the funds for asset ownership
are transferred by other means that are not within the scope of this problem.)
The owner of the token can add value to the token by building on it, as well as
approve a sale to a buyer, and an approved buyer can buy the asset. The real
estate asset may also appreciate or depreciate as determined by a town’s asses-
sor. For simplicity, assume that the town supervisor and the assessor have the
same identity, and that they represent the town and perform operations on
behalf of the town.

RES4 is a simplified version of the real-world real estate business. You can improve this
basic design after you complete development of the RES4 smart contract and Dapp.

9.2.1 Use case diagram

To get to the smart contract design, you begin with design principle 2: designing the
use case diagram. Figure 9.3 shows the actors for the RES4 token as follows:

 Town supervisor (developer or creator of the asset)
 Owner of the asset
 Builder of the asset (adds value to asset)
 Buyer of asset
 Assessor of the value of the asset

Now let’s depict these elements in a use case diagram to begin solving the RES4 token
Dapp problem. You can observe the four roles: town supervisor, assessor, owner, and
buyer. Essential operations are represented as use cases: add an asset, build, approve
buyer, buy and transfer, and assess the property.

234 CHAPTER 9 Tokenization of assets

9.2.2 Contract diagram

The contract diagram expands on the guideline provided by the use case diagram and
adds more elements of design: data structures, modifiers, events, and functions (func-
tion headers). The contract diagram has only three elements: data, events, and func-
tions. The access rules are specified inside the functions with require statements
(require (condition);), not at the header of the functions. The RES4 follows the
ERC721 standard that defines a set of function headers.

 Figure 9.4 shows the contract diagram for RES4. Besides the data and the events,
the RES4 functions in the contract diagram follow the use case diagram. These
functions are addAsset(), build(), approve(), and transfer(). The functions
appreciate() and depreciate() are for supporting the operations of the assessor
role. These operations allow town officials to increase or decrease the current value of
an asset. The events specified in the contract diagram are required by the ERC721
standard.

Create an asset
token RES4

Town supervisor

Town assessor

Build; add value to
asset

Owner of asset

Assess asset:
depreciated,
appreciated

Approve
(a participant to

buy)

Buyer

Transfer
(buy asset)

Other ERC721
functions

Figure 9.3 Use case diagram
for RES4 asset token Dapp

235RES4: Non-fungible real estate token

9.2.3 RES4 ERC721-compliant token

Do you wonder how ERC721 is defined? A smart contract implements the specifica-
tions of the ERC721, so it is ERC721.sol, written in Solidity. In this section, let’s look at
the details of ERC721 token and at how to make RES4, an ERC721-compliant token.

ERC721 TOKEN STANDARD
Every ERC721 token is unique. One of the requirements of the ERC721 standard is
the limited supply of tokens. The limited number of tokens is not an issue with real
estate assets; only a limited number of assets is possible if you consider all the real
estate assets in an entire town or country, or the whole world. The standard is an inter-
face that specifies functions (headers) that are required to be implemented. For a
token to be ERC721-compliant, it has to implement the required functions of the
ERC721 interface standard. The design of the ERC721 interface piggybacked on the
ERC20 definition. The ERC721 standard is also evolving as I write this chapter. A new
function called safeTransferFrom() has been added to the ERC721 interface, for
example. Here are the functions of the ERC721 interface that are used in the develop-
ment of RES4:

RES4 is a ERC721

struct asset {uint256 id; uint price; }

uint assetCount;

uint supervisor;

mapping (uint=>asset) assetMap;

mapping (uint=>address) assetOwner;

mapping (address=>uint) ownerAssetCount;

mapping (uint=>address) approvals;

event Transfer

event Approval

//RES4-specific functions

function addAsset (uint price, uint toAddress)

function build (uint assetId, uint value)

function approve (address toAddress, uint tokenId)

function transferFrom (address fromAddress, address toAddress,
 uint tokenId)

function appreciate (uint tokenId, uint valueChange)

function depreciate (uint tokenId, uint valueChange)

//Addtional ERC721 functions

RES4-specific data

RES4 events as per
ERC721 standard

RES4 functions:
application-specific

RES4 token is
ERC721-compliant

RES4-
ERC721-specific

functions

Figure 9.4 RES4 contract diagram

236 CHAPTER 9 Tokenization of assets

interface ERC721 {
function balanceOf(address _owner) external view returns (uint256 balance);
function ownerOf(uint256 _tokenId) external view returns (address owner);
function approve(address _to, uint256 _tokenId) external payable;
function transferFrom(address _from, address _to, uint256 _tokenId) external

➥ payable;
function safeTransferFrom(address _from, address _to, uint256 _tokenId)

➥ external payable;
…}

Besides these functions, we’ve also used a function from another standard ERC721-
Enumerable interface: function totalSupply() public view returns (uint256
total). The totalSupply() function limits the number of tokens. The number of
items are limited for many assets, including paintings, art, and habitable land on
earth. The next two functions, balanceOf() and ownerOf(), gives details on tokens
(assets) owned by an address. The function approve() is required for ERC721 to allow
an address to spend the token. But it is very important to note that in the RES4, with
real estate as an asset, the approval has a different meaning: approval of an asset
(token) for sale to a specific address. The functions transferFrom() and safeTrans-
ferFrom() are variations of functions to transfer an asset from one address to another.

 Given these functions, how do you incorporate the ERC721 standard into your
smart contract and Dapp development? That’s what you’ll learn next.

NOTE ERC token standards are in flux, changing in numbering, support
classes, and functions. This situation is understandable for an emerging subject
such as tokenization. Some tokens are implemented as only partially compati-
ble with the standards. Be aware of these aspects when you develop a token.

RES4 SMART CONTRACT

Using the use case diagram (figure 9.3) and the contract diagram (figure 9.4) as
guidelines, develop the smart contract for RES4. Figure 9.5 shows the block diagram
of the Dapp. Observe a new element: the ERC721 token interface. The RES4 smart
contract will use the inheritance of traditional object-oriented design for involving
ERC721, as shown in figure 9.5. You’ll have to add ERC721 as another smart contract
(ERC721.sol) in the contracts directory. It also needs other support contracts. These
contracts are located in helper_contracts directory to separate them from the main
RES4 contract. The ERC721 interface is incorporated into the code by the following
additions to the smart contract. Follow these steps to inherit the features of one smart
contract into another:

1 Import the ERC721 standard interface at the beginning of the smart contract
code for RES4:

import "./helper_contracts/ERC721.sol";

The ERC721 smart contract is imported from a helper_contracts directory
that also has other contracts used by ERC721.sol. Open the contracts directory,
and browse the helper contracts. You’ll find many support contracts.

237RES4: Non-fungible real estate token

2 This relationship between RES4 and ERC721 is also shown in figure 9.5. RES4
smart contract is an ERC721 token; this is how you specify inheritance in smart
contracts:

contract RES4 is ERC721

9.2.4 RES4 Dapp

Figure 9.5 shows the overall structure of the Dapp with the contract and app parts.
Listing 9.1 shows the RES4 contract. The ERC721 interface is imported from the
Ethereum EIP site (http://mng.bz/v9oJ). For convenience, we’ve downloaded and
added this ERC721 smart contract and other related standard smart contracts to the
RES4-contract/contracts in a directory called helper_contracts.

DEVELOPMENT OF RES4 SMART CONTRACT

The data defined is mostly for managing the various attributes of the tokens. The
functions are developed in four major categories, as delineated by comments in listing
9.1:

 Mapping for various attributes
 Functions, events, and data for ERC721 compliance
 Application-specific (RES4-specific) functions
 Internal functions to support these and other utility functions
 You’ll have to implement all the functions for ERC721 compliance, but your

Dapp may not need or use all of them. That’s why you see two sections in listing
9.1: one for the ERC721 functions required for the RES4 Dapp and one at the
bottom that has ERC721 functions used by the RES4 token Dapp but imple-
mented for compliance. You can find the complete smart contract in the code-
base of this chapter.

ERC721 token
interface

RES4-contract

Is a

RES4-app

RES4-Dapp

RES4 real
estate token

RES4 interface to transact
real estate token

Figure 9.5 RES4 Dapp
with ERC721-compliant
smart contract

http://mng.bz/v9oJ

238 CHAPTER 9 Tokenization of assets

pragma soldity >=0.4.22 <=0.6.0;
import "./helper_contracts/ERC721.sol";

contract RES4 is ERC721 {
 struct Asset{
 uint256 assetId;
 uint256 price;
 }

 uint256 public assetsCount;
 mapping(uint256 => Asset) public assetMap;
 address public supervisor;
 mapping (uint256 => address) private assetOwner;
 mapping (address => uint256) private ownedAssetsCount;
 mapping (uint256 => address) public assetApprovals;

//Events
 event Transfer(address from, address to, uint256 tokenId);
 event Approval(address owner, address approved, uint256 tokenId);

 constructor()public {
 supervisor = msg.sender; }

// ERC721 functions

 function balanceOf() public view returns (uint256) {… }

 function ownerOf(uint256 assetId) public view returns (address) {… }

 function transferFrom(address payable from, uint256 assetId)…{ …}

 function approve(address to,uint256 assetId) public { …}

 function getApproved(uint256 assetId) … returns (address) { …}

// Additional functions added for RES4 token

 function addAsset(uint256 price,address to) public{ … }

 function clearApproval(uint256 assetId,address approved) public {…}

 function build(uint256 assetId,uint256 value) public payable { …}

 function appreciate(uint256 assetId,uint256 value) public{ …}

 function depreciate(uint256 assetId,uint256 value) public{ … }

 function getAssetsSize() public view returns(uint){… }

// Functions used internally

 function mint(address to, uint256 assetId) internal { …}

Listing 9.1 RES4 smart contract (RES4.sol)

RES4 is an
ERC721 token.

Hash tables
for managing
tokens

Events indexed and
recorded on blocks

ERC721 functions
used by RES4

RES4 Dapp-specific
functions

Internal functions

239RES4: Non-fungible real estate token

 function exists(uint256 assetId) internal view returns (bool) { … }

 function isApprovedOrOwner(address spender, uint256 assetId) {…}

 // Other ERC721 functions for compliance }

Follow the model provided by this ERC721-compliant smart contract, and use it as a
guideline for implementing any other NFT Dapp. You can reuse the ERC721-based
code and add to your application-specific code to this base code.

TRANSFERFROM FUNCTION

The signature of the transferFrom() function implemented in RES4.sol is slightly dif-
ferent from the one defined in ERC721. It has two parameters—from address and
asset id—instead of the three parameters of the same function of ERC721. In the
RES4 case, the third parameter is implied and can be obtained from the msg.sender.
Instead of a centralized authority or a designated person requesting the transfer, the
approved person, or the account buying the asset, requests the transfer. In my opin-
ion, this deviation is justifiable, as it (RES4 version of transferFrom()) implements a
decentralized peer-to-peer transfer, with the blockchain acting as an intermediary.

9.2.5 Interaction with RES4 Dapp

The next step is developing the app part of the RES4 in the RES4-app module,
which exposes its functions in a web UI. Download RES4-Dapp.zip, unzip it, and
review the structure. You’ll deploy it on the local Ganache test chain, where ten
accounts with balances are readily available. Following the structure in figure 9.5,
locate the various parts of the Dapp. Then run the following steps to explore the
workings of the RES4 token:

1 Start the Ganache test chain by clicking Quickstart. Copy the mnemonics at the
top of the Ganache GUI. Link MetaMask to Ganache, using the mnemonics
copied from the Ganache interface.

2 Assume that the town supervisor and assessor represent the identity of the town
and represented by the address of Account1.

3 Deploy the RES4 token from the RES4-contract directory. Navigate to RES4-
contract, and issue the Truffle command to deploy the smart contracts. By
default, the first account on Ganache will be the deployer and town supervisor:

truffle migrate --reset

4 Deploy the web application from the RES4-app directory:

npm install
npm start

You can view the RES4 web interface (figure 9.6) when you access it by using
localhost:3000.

240 CHAPTER 9 Tokenization of assets

5 Move to the MetaMask wallet and link it to the Ganache test chain, using the
mnemonics on the Ganache interface.

In MetaMask, reset the accounts for resetting nonce on Account1 through
Account4. Click the Account1 icon, and select Settings > Advanced > Reset
Account. Repeat this step for Account2, Account 3, and Account4.

6 The web UI in figure 9.6 shows five operations. Before initiating every opera-
tion, refresh the browser:
– Add an asset—by the town supervisor, the deployer of the RES4 token
– Assess— by the town supervisor, the deployer of the RES4 token
– Build—by the owner of the property
– Approve—by the owner of the property
– Buy—by the approved buyer

7 Add a few assets (by town supervisor). Asset numbers are allocated automati-
cally starting at 0. In a production application, the asset IDs will be 256 bits.

From Account1 (town supervisor’s) in MetaMask, add an asset of value 20,
choose Account2 as owner, click Add, and confirm.

From Account1 in MetaMask, add an asset of value 30, choose Account3 as
owner, click Add, and confirm.

You see the assets added at the bottom of the UI, as shown in figure 9.7.

Assets #0 and #1 are added to the UI, and the owners are Account2 and
Account3 respectively. The values of these assets are 20 and 30 as specified
when they were allocated (created) by the town supervisor (Account1).

The five operations
on the RES4 token

Figure 9.6 RES4 interface

241RES4: Non-fungible real estate token

8 Build on the asset (by owner) increases the value of the asset. Reload (refresh)
the browser, and move to Account2 in MetaMask. In the Build interface, enter
the asset ID as 0 and the build value as 5, click Build, and confirm

You see that the value of asset #0 has increased to 25, as shown in figure 9.8.

Two assets (tokens) created with
different owners and values

Figure 9.7 RES4 interface after addition of two assets #0, #1, values 20 and 30 for two different owners

Asset #0’s price appreciated by 5 ETH
after the owner built on it

Figure 9.8 RES4 interface with asset #0 after building and increasing its value by 5 ETH

242 CHAPTER 9 Tokenization of assets

9 Approve sale to a couple of people (two addresses), and clear one of them.
Refresh the browser before you begin this operation.

In Account2 in MetaMask, enter asset ID as 0 and address as Account3, click
Approve (sale to Account3), and confirm.

Still in Account2, enter asset ID as 0 and address as Account3, click Clear
(withdraw approval sale to Account3), and confirm.

Still in Account2, enter asset ID as 0 and address as Account4, click Approve
(sale to Account4), and confirm.

You’ll see the screen shown in figure 9.9.

10 An approved address buys an asset (transfer occurs).
From Account4 (an approved account), enter the asset ID as 0 and the

Account2 address as From in the Buy interface; then click Buy, and confirm.

Asset #0’s ownership is changed to the address of Account4, as shown in fig-
ure 9.10.

You can also review the account balances, as shown in figure 9.11 and also in the
Ganache UI. The Ganache UI shows the balances of all the accounts involved in the
transactions, with the appropriate values added and deducted from the respective
accounts. Figure 9.11 shows Account4, whose balance has gone down from 100 ETH
to 73 ETH after buying the asset #0 and paying for the Txs. As shown in the middle of
figure 9.11, Account2’s balance is about 118—an increase from the initial balance of
100 ETH because it incurred fees for selling asset #0 and the transaction fees. On the

An account has been approved by
the owner for buying the asset #0.

Figure 9.9 Asset#0 approved for sale to Account 4

243RES4: Non-fungible real estate token

right side of figure 9.11 are logs of some of the transactions discussed earlier, dis-
played in MetaMask’s history of transactions. The balances you observe may be slightly
different for you, depending on other transactions that you may have tried. Don’t hes-
itate to explore beyond the instructions given in these steps.

Approved account bought asset #0
and is the new owner

Figure 9.10 Asset #0 transferred to Account4

Balances of transacting accounts Transactions confirmed

Figure 9.11 Account balances for Account4 and Account2, and a trace of operations

244 CHAPTER 9 Tokenization of assets

NOTE Some of the screenshots may be blurry. If you follow along with your
deployment of RES4, you should be able to see a clear picture of these out-
comes in your UI. I urge you to try the operations on your own, using the
instructions given here as a guideline.

11 Here is a situation in which an unapproved account tries to buy an asset.
Enter Account3 in the Buy operation’s interface, select asset 1, and click Buy.

MetaMask will throw a transaction error because the contract reverted at the
smart contract level. This error message is displayed in the MetaMask pop-up
window, shown in figure 9.12.

12 From Assess interface, assessor assesses the value of a property (that appreciated).
From Account1 in MetaMask (the town supervisor and assessor use the iden-

tity of the town), enter the asset ID as 1 and the appreciated value as 5, click the
Appreciated button, and confirm.

You should see the value of asset ID 1 increased by 5 ETH.

13 From Assess interface, assessor assesses the value of a property (that depreciated).
From Account1 on MetaMask (the town supervisor and assessor use the iden-

tity of the town), enter the asset ID as 0 and the depreciated value as 5, click the
Depreciated button, and confirm.

You should see the value of asset ID 0 decreased by 5 ETH.

Smart contract reverts the
transaction if unapproved
account tries to buy an asset

Figure 9.12 Buy from
unapproved account reverted

245RES4: Non-fungible real estate token

The asset values after the assessment are shown in figure 9.13.

14 Add two more assets to Account4 of the same value from Account1 in MetaMask.
From Account1 (town supervisor’s) in MetaMask, add an asset of value 10,

choose Account4 as owner, click Add, and confirm.

From Account1 in MetaMask, add an asset of value 10, choose Account4 as
owner, click Add, and confirm.

You see the newly added assets in the UI, as shown in figure 9.14. Even
though the assets are of equal value, they are not the same. One could be a little

Asset #0 depreciated by 5ETH Asset #1 appreciated by 5ETH

Figure 9.13 Asset #0 depreciated by 5 ETH, Asset #1 appreciated by 5 ETH

Account #4 owns assets #0, #2, and #3.

Figure 9.14 Account4 has three different assets (#0,#2,#3): ERC721 tokens

246 CHAPTER 9 Tokenization of assets

red house, and the other could be a piece of land yet to be developed. A RES4
token is not the same as another RES4 token. In this case, Account4
(0x21459…) has three assets, each of which is unique. That is the fundamental
characteristic of ERC721, an NFT (non-fungible token).

This exploration with RES4, an ERC721-compliant token, should have revealed a
whole new perspective on blockchain and decentralized applications. The NFT is
indeed powerful, applying to a wide range of fields: art, collectibles, real estate, finan-
cial portfolios, video gaming artifacts, human resources, skills portfolios, and many
more. Try to find ERC721-compliant token use in your field of expertise, and imple-
ment a token Dapp. The token Dapp is a significant advancement enabled by the
cryptocurrency innovation. There are many more application models beyond fungi-
ble and non-fungible tokens. Some of them directly address the trust and integrity ele-
ments introduced in chapter 3.

9.3 Retrospective
The RES4 ERC721-compliant token implemented in this chapter is a proof of concept
for NFT. The RES4 designed and developed here is a minimal implementation. By
including a domain expert, you can further build RES4 into a full-fledged real estate
token. This design could include rules for governance and local laws, and other such
limitations.

 The concept of NFT assets has a broad impact on numerous application domains.
The models and standards developed based on this concept can enable a whole range
of applications, from managing stored value assets to the human resources skills port-
folio. It has the potential to bring art collectors, fund managers, and online gamers into
the blockchain world, building a rich and diverse ecosystem for blockchain applications.

 Consider this: FT can be transferred in any denomination. That is, you can transfer
0.5 ERC20 tokens or even 0.000005 tokens. This characteristic is true of any FT. For most
NFT, a partial token transfer is practically impossible and infeasible. Can you transfer 0.5
kitties physically? On the other hand, for NFT, such as a house, you can have partial own-
ership. Still, one property (house) is not exchangeable with any other house one to one.
All these aspects open many exciting opportunities for the ERC721 standard.

 ERC20 and ERC721 tokens have opened a new world of opportunities and applica-
tion models for blockchain technology. These tokens also represent the beginning of
many more innovative standards and improvements to enrich the Ethereum ecosys-
tem. As I write this chapter, ERC20 has been updated to ERC777, an improved ver-
sion. ERC721 is augmented with ERC165, which checks whether the ERC721 token is
indeed compliant with the standard.

 Other application models are as exciting as the token Dapp. One of them is a
decentralized autonomous organization, in which decisions for action items are made
autonomously based on facts input and recorded on the blockchain. The decision
made, as well as the explanation (reasons) for decisions, can be tracked by examining
the distributed ledger that recorded the transactions and relevant state information.

247Summary

 ERC token standards are being proposed for identity, governance, and security.
These tokens and EIPs of Ethereum are sure to enable new application models, trans-
form the Dapp ecosystem into mainstream application framework, and propel Dapps
as natural systems.

 The token application model enhanced by standards has opened enormous
opportunities to monetize services and utilities from the energy marketplace (Grid+)
to decentralized prediction markets (Augur). Ultimately, broader adoption and mon-
etization possibilities are important for the sustainability of a technology. Blockchain
is no exception.

9.4 Best practices
 Various application models have emerged from the initial cryptocurrency inno-

vation in Bitcoin. Review the different existing application models and stan-
dards before designing and developing a Dapp. Existing application models
and standards may guide and simplify your design.

 Standards have been developed to streamline tokens and their features and to
enable exchangeability and interoperability. Wherever possible, actively
research the existing standards, and make sure that your smart contract design
is compliant with the standards.

 Determine whether public, permissioned, or private membership is appropriate
for your Dapp. This important design consideration will determine which block-
chain you’ll use. Ethereum and Bitcoin are relevant as public Dapps, for example,
whereas the Hyperledger framework is by design permissioned and appropriate
for private deployments. For the RES4 token, you need a public blockchain net-
work to offer equal opportunity for anybody to buy and sell real estate.

9.5 Summary
 Blockchain can not only enable cryptocurrency transfer between unknown

decentralized participants, but also empower decentralized participants in
applications for robust and transparent asset transfers.

 The EIP manages continuous improvement to the protocol as well as the appli-
cation models through its standards.

 Two types of token models are fungible (FT) and non-fungible tokens (NFT).
 The FT and NFT token are defined by Ethereum standards ERC20 and

ERC721.
 An NFT token model is suitable for assets such as real estate and collectibles.
 RES4-Dapp for management of real estate assets is an example of an end-to-end

development NFT model.
 NFT token Dapp methodology includes implementing a standards-compliant

smart contract using inheritance feature and an openly available ERC721 inter-
face and other related artifacts for token management.

248 CHAPTER 9 Tokenization of assets

 The non-fungible token is a disruptive application model covering diverse
domains, from collectible assets to financial portfolios.

 This chapter takes a significant step toward advancing blockchain applications
from cryptocurrencies to cryptoassets.

249

Testing smart contracts

This chapter introduces you to a systematic approach for writing test scripts for the
smart contracts of your Dapps. Testing is an essential step in any system development
process: hardware or software. It is all the more critical for decentralized blockchain
applications with unknown peer participants. In chapters 2–9, you tested the inte-
grated Dapp consisting of the smart contract (Dapp-contract) and the app (Dapp-
app) by interacting with the web UI. Although this approach is acceptable for testing
the functionality of Dapp, systematic testing of a smart contract is required to ensure
the robustness of the core logic of a decentralized application. This testing involves
exercising every function and every modifier of a smart contract. For this exhaustive
and extensive testing, covering all the possible execution paths, inputting the test

This chapter covers
 Seeing the importance of testing smart contracts

 Writing test scripts in JavaScript

 Using Truffle frameworks to support smart
contract testing

 Interpreting outputs from running test scripts

 Developing test scripts for the counter, ballot,
and blind auction smart contracts

250 CHAPTER 10 Testing smart contracts

commands and parameters manually is cumbersome. Then how do you do it? You do
it by writing a script that automatically runs through test commands and verifies that the
results match the expected behavior specified in the script. For this type of testing,
you’ll write a script file of all the tests and automate the testing process.

 In this chapter, you’ll learn about this test automation process for smart contracts.
Writing test scripts requires specific knowledge of primitives such as beforeEach, it,
and describe, as well and how and when to use them. This chapter illustrates the
development of test scripts with three different but familiar smart contracts: counter,
ballot, and blind auction. Thus, you are gradually moving from a simple test script to a
more complex one. You’ll also learn about using the Truffle suite of tools for running
the test scripts and verifying that the tests pass (or fail) as you are developing and
deploying the smart contracts.

10.1 Importance of testing smart contracts
Those of us who grew with the emergence of integrated chips and system on a chip
know the importance of testing. Testing is an essential phase of hardware develop-
ment. Once a microchip is mass-produced, it is impossible to go back and fix bugs.
The design is hardcoded. How about smart contracts, the core logic of our Dapps?
Smart contracts are like hardware chips—immutable code. Once deployed, they are
final and cannot be updated (unless special provisions or escape hatches are built in).
More recently, several million-dollar heists in a DAO hack and other wallet issues were
due to bugs in smart contract code. So smart contracts must be tested thoroughly
before deployment for production use.

10.1.1 Types of testing

Software testing takes many forms, depending on the granularity of tests and time of
test execution during the development phases:

 Unit testing—Testing of individpual components such as a single function
 Integration testing—Testing of the operation flow of the integrated system
 System-level test-driven development—Testing done to verify the integrity of the sys-

tem developed by different members of the team as functions are added and
checked into repositories

In previous chapters, for testing the Dapps, you used an ad hoc plan that exercised
the operations of a Dapp by invoking them from the web UI. In this chapter, you focus
on unit testing that involves exhaustive testing of the smart contract functions and
modifiers. These tests are code scripts that simulate the execution of functions of the
smart contract being tested. With the support of the Truffle test framework, the pass-
ing and failing of a test can be visually verified by check (✔) and X marks.

251Testing counter smart contract

10.1.2 Language choice for test programs

Usually, testers or test programs are written in the same language as the main applica-
tion to be tested. In this case, you can write the tester itself as a smart contract in the
Solidity language. The Pet Shop example provided with the Truffle documentation
illustrates tests written in Solidity (https://www.trufflesuite.com/tutorials/pet-shop).
But many smart contracts, such as Ballot, use the address data type for the chairper-
son and the voters. This causes a problem when another smart contract is used as a
tester. So we will use the alternative language supported by Truffle—JavaScript (JS)—
for writing our tests. Truffle supports both languages and has tools to support JS-based
testers, as well as JS test frameworks such as Mocha and Chai. These tools provide
commands that are specially designed to write clean, expressive test code. You’ll
explore testing with the three Dapps developed in chapters 2–5. Choosing these famil-
iar Dapps helps you focus on the testing aspects. In the following sections, you’ll use

 The familiar smart contracts Counter.sol, Ballot.sol, and BlindAuction.sol
 Test commands (it, describe) of the Mocha test framework
 The Truffle assertion framework in Chai (assert)
 Test commands with reverting conditions within a smart contract

10.2 Testing counter smart contract
The counter smart contract discussed in earlier chapters is a simple one, with func-
tions to initialize, increment, decrement, and get (value). Let’s require that this
counter be allowed to hold only positive values, including 0. To make this counter
contract robust, let’s add modifiers that enforce rules for incrementing and decre-
menting so that the positive value of the counter can be maintained. The resulting
smart contract for the counter is shown in the next listing. The requirement that the
value has to be positive is enforced by the modifiers added to the base code of the
counter smart contract.

contract Counter {
 int value; //positive value counter

 constructor() public{
 value = 0;
 }
 modifier checkIfLessThanValue(int n) {
 require (n <= value, 'Counter cannot become negative');
 _;
 }
 modifier checkIfNegative(int n) {
 require (n > 0, 'Value must be greater than zero');
 _;
 }

Listing 10.1 Counter.sol

Modifiers for
maintaining
positive value for
the counter

https://www.trufflesuite.com/tutorials/pet-shop

252 CHAPTER 10 Testing smart contracts

 function get() view public returns (int){
 return value;
 }

 function initialize (int n) checkIfNegative(n) public {
 value = n;
 }

 function increment (int n) public checkIfNegative(n) {
 value = value + n;
 }

 function decrement (int n) public checkIfNegative(n)
checkIfLessThanValue(n) {

 value = value - n;
 }
}

I’ll begin discussing the test script with the counter smart contract. This discussion is
followed by two more test scripts: one for the ballot smart contract and another for
the blind auction. For the counter, both the smart contract and the corresponding
test scripts are provided (listings 10.1 and 10.2). For the next two smart contracts, I’ll
discuss only the test scripts, because you’ve already seen the workings of the ballot and
blind auction.

10.2.1 Writing counter test script

In this section, you’ll learn about an approach to writing the test scripts using the
commands provided by the Truffle JS test framework. Writing a test function script
involves these three steps:

 Identifying functions and modifiers to test
 Writing the test script that will exercise each of the functions and ensure that

these functions work as expected
 Writing the test script for exercising each of the modifiers and making sure that

they work

How do you write these test scripts? What support structures do you have to write
these tests? Truffle testing framework provides structures that facilitate writing the
tests. Some common and useful test structures are

 beforeEach()—This function specifies the preconditions for other tests. It
allows you to specify the code that will be executed before every test defined by
it() and describe() test specifications. The beforeEach() function initializes
the contract and establishes the base condition for the execution of a test com-
mand.

 it()—This function is a standalone test of a function; you can think of it as an
independent test or a unit test.

Functions of the
counter contract
that use the
modifiers

253Testing counter smart contract

 describe()—This function is a composite test structure, and it specifies a
group of related it() tests. The Mocha framework supports these test func-
tions. Inside the test functions (it, describe, and so on), you’ll also use a few
other declarations:
– async()—Allows for the asynchronous execution of functions, especially

because transactions on a blockchain takes variable run times
– await()—Waits for a callback from the function invoked using async()

mode
– assert()—Specifies the condition to assert; typically, it helps match the

actual result of a statement execution with expected results. If the match
fails, the assertion fails.

Now let’s examine how these items (beforeEach(), it(), describe(), async(),
await(), and assert()) are used in writing the test script for the counter smart con-
tract. Listing 10.2 is the JS code for testing the counter smart contract. How do you
develop the test code?

 First, define the smart contract to be tested. Also declare that you are using the
Truffle assertions framework and that a module is required. Then write the code to
deploy and initialize the contract, using the beforeEach() function. Before execution
of every it() test, the beforeEach() function is executed. Listing 10.2 provides a
model test script to get you started.

 The listing shows the independent tests (it()) for each function and each modi-
fier in the smart contract. This simple test script consists of one it() function for each
item to be tested. Each it() test has an assert() or truffleAssert() statement to
check whether the test succeeded. This approach is simple, but a good starting point.

const Counter = artifacts.require('../contracts/Counter.sol')
const truffleAssert = require('truffle-assertions');

contract('Counter', function () {
 let counter
 const negativeCounterError = 'Counter cannot become negative';
 const negativeValueError = 'Value must be greater than zero';

 beforeEach('Setup contract for each test', async function () {
 counter = await Counter.new()
 await counter.initialize(100)
 })

 it('Success on initialization of counter.', async function () {
 assert.equal(await counter.get(), 100)
 })

 it('Success on decrement of counter.', async function () {
 await counter.decrement(5)

Listing 10.2 counterTest.js

Start definition of test function;
identify smart contract tested

This code executes before each test;
deploy and initialize the contract.

Test
function for
initialize()

Test function
for decrement()

254 CHAPTER 10 Testing smart contracts

 assert.equal(await counter.get(), 95)
 })

 it('Success on increment of counter.', async function () {
 await counter.increment(5)
 assert.equal(await counter.get(), 105)
 })

 it('Failure on initialization of counter with negative number.',
 async function () {
 await truffleAssert.reverts(
 counter.initialize(-1),
 truffleAssert.ErrorType.REVERT,
 negativeValueError,
 negativeValueError
)
 })

 it('Failure on underflow of counter.', async function () {
 await truffleAssert.reverts(
 counter.decrement(105),
 truffleAssert.ErrorType.REVERT,
 negativeCounterError,
 negativeCounterError
)
 })

 it('Failure on increment with negative numbers.', async function () {
 await truffleAssert.reverts(
 counter.increment(-2),
 truffleAssert.ErrorType.REVERT,
 negativeValueError,
 negativeValueError
)
 })

 it('Failure on decrement with negative numbers.', async function () {
 await truffleAssert.reverts(
 counter.decrement(-2),
 truffleAssert.ErrorType.REVERT,
 negativeValueError,
 negativeValueError
)
 })
})

Before running each test function, the counter is set to 100 by the function before-
Each(). For the tests, each it() test performs an operation, awaits the results, and
asserts (checks) whether the results match the expected outcome. The it() for decre-
ment shows these aspects. Observe the meaningful string parameter that describes the
test: 'Success on decrement.' It decrements by a value of 5 the counter value that
has been set to 100 by the beforeEach() function. Then it awaits completion of this

Test function
for increment()

Tests for a modifier
that controls the

value of the counter
to be >=0

255Testing counter smart contract

operation and checks if it is 95 using the assert.equal(…). Use this syntax as a pat-
tern for writing it() test scripts:

it('Success on decrement of counter.', async function () {
 await counter.decrement(5)
 assert.equal(await counter.get(), 95)
 })

Observe the syntax of the it() test. It has a description string for the test, and the
function to be executed. Because the function is an async() function (asynchro-
nous), the next line is the code to await completion of the decrement function, fol-
lowed by the assert statement that compares the result to check whether it is correct.
That’s it. Now you’re all set to write test scripts with simple independent tests defined
by it(), using the test script in listing 10.2 as a guide.

10.2.2 Positive and negative tests

Recall the idea of positive tests and negative tests described in chapter 3. Here are
some suggestions for developing a testing scheme so that you can identify the negative
and positive tests when developing and running the scripts:

 Positive tests—Make sure that the smart contract performs correctly and as
expected when given a valid set of inputs. In the test script, all these tests have
their description begin with the phrase 'Success on'. This string is also output
when you run the script.

 Negative tests—Make sure that the smart contract catches the errors during veri-
fication and validation and that functions revert when given invalid inputs. In
the test script, all these tests have their description begin with the phrase
'Failure on'. This string is also output when you run the script.

10.2.3 Running the test script

Now it is time to run the test script and check whether the tests passed. The script
shown in listing 10.2 captures the testing concepts discussed so far. Save this script as
counterTest.js in the test directory of your application’s contract directory. (Recall
from chapter 4 that this test directory was created automatically when the truffle
init command executed.) The general directory structure is shown in figure 10.1.
The test directory houses the test.js script (in this case, counterTest.js), which will be
run to test the contract automatically.

 First, we need to start our Ganache test network on which the contract to be tested
will be deployed. Double-click the Ganache icon and then click Quickstart, and you’ll
see the Ganache UI. (You can also start the Ganache by using the command-line inter-
face.) Then enter these commands (the npm install command is for installing test-
ing modules of Truffle):

npm install
truffle test

256 CHAPTER 10 Testing smart contracts

That is it. Automatic execution of the test scripts begins, and you will observe that the
tests pass, as shown in figure 10.2. The truffle test command initiates the execu-
tion of the test script, compiles and deploys the contract, and then runs the test script.
The response screenshot is shown in figure 10.2.

You can observe three tests for the three functions, and four tests for the modifiers
work as expected, verified by the assertions at the end of the test script functions. The
output messages for the positive tests begin with 'Success on', and those for negative
tests begin with 'Failure on'. Follow this best practice in your design of test scripts to
identify the test type. The check before the test outcomes indicates that the test has
passed. The time shown in parentheses indicates the time it took to perform the test.
Times greater than 100ms are displayed in red, in case you want to reduce the time
and cost of execution of a certain test. These times are a concern when you test this
smart contract on a real network such as an Ethereum mainnet. For now, you don’t
need to worry about that number, because your goal is to test the functional character-
istics of the smart contract, not the timing issues.

<xyz>-contract <xyz>-app

<xyz>-Dapp

test

test.js Execute test script
using truffle test

Write and save test script
in test directory

Figure 10.1 Directory
structure for testing

Figure 10.2 Test outputs for the counter smart contract

257Testing ballot smart contract

 Next, let’s explore additional testing features and reinforce the testing approach
introduced with the simple counter smart contract.

10.3 Testing ballot smart contract
This section tests another smart contract discussed in chapters 3 and 4: the ballot smart
contract. Let’s review its functions: registering the voter, voting, requesting the winner,
and advancing the phase of voting. Review the smart contract for the ballot and its func-
tions, and then you’re ready to learn to write the test script. This contract requires
more-involved testing than the counter smart contract. Besides the test primitives
beforeEach() and it(), a new composite test primitive, describe(), is introduced.

10.3.1 Writing the ballot test script

Let’s examine how you can automate testing of the familiar ballot smart contract. An
abbreviated test script is shown in listing 10.3. The condensed version of the test scripts
shows the structure of the tests, such as how a new composite test, describe(), is struc-
tured with many it()s. Observe that describe() is a combination of beforeEach()
and it() tests. This occurs because you have to set up the conditions for voting before
you can vote, you have to complete voting before you can test the winner function, and
so on.

…
contract('Ballot', function (accounts) {

 let ballot

 beforeEach('Setup contract for each test', async function () {
 ballot = await Ballot.new(3)
 });

 it('Success on initialization to registration phase.',
 async function(){
 let state = await ballot.state()
 assert.equal(state, 1)
 });

 describe('Voter registration', function() {
 it('Success on registration of voters by chairperson.',
 async function () {...

 it('Failure on registration of voters by non-chairperson entity.',
 async function () { ...

 it('Failure of registration of voters in invalid phase.',
 async function () { ...

 });

Listing 10.3 ballotTest.js

Before each test, deploy
the smart contract ballot.

A standalone it() test to
check balloting state/phase

A composite test
describe() with three it()s
for testing registration

258 CHAPTER 10 Testing smart contracts

 describe('Voting', function() {
 beforeEach() {}
 it() { }
 it() { }
 it() { }
 it() { }
 it() { } });

 describe('Phase change', function() {

 it() { }
 it() { }
 it() { } });

 describe('Requesting winner', function() {
 beforeEach() {}
 it() { }
 it() { }
 it() { }
 it() { }
 it() { } });
})

Now let’s examine the first describe() composite test for voter registration. For a
voter to be registered, the registration

 Has to be performed by the chairperson
 Has to be done during the registration phase
 Cannot be done by nonchairperson voters

These test conditions are coded as three it() test cases within the describe() test.
I’ve chosen to introduce the testing of the ballot smart contract because it is ideally
suited for illustrating the composite test cases defined by describe(), as you see three
more of them in listing 10.3.

 Testing the vote() function of the ballot smart contract requires a setup before each
it(), described, of course, by a beforeEach() script. Similarly, testing a reqWinner()
function requires a combination of beforeEach() and it() scripts. Testing the phase
change function of the ballot smart contract requires three it() tests. You can use these
tests as examples when designing and defining your test scripts.

 Now let’s run the test script, using Ganache and Truffle, and examine the output.

10.3.2 Executing the ballot test script
Download the code ballot-contract from the codebase of the chapter. Start the
Ganache test chain by clicking its icon and then clicking Quickstart. Then navigate to
the ballot-contract directory. Install the node modules required, using the npm com-
mand. Then run the test command, using truffle test. This command picks up the
JS test file ballotTest.js from the test directory and runs it. Figure 10.3 shows the test
output after you enter these two commands:

npm install
truffle test

A describe() test with
beforeEach() and five
it()s for testing voting

A composite test
describe() with three it()s
for testing phase change

A describe() test with
beforeEach() and six it()s
for testing request winner

259Testing ballot smart contract

The output of the test run shows five sets of outputs resulting in 17 test cases. Voter reg-
istration, voting, phase change, and requesting the winner are composite describe()
test scripts representing the four main functions of the ballot smart contract. You can
identify the positive and negative tests by using the output messages coded in the test
script. In the output, the leading messages (Voter registration, Voting, and so on) out-
put by the describe() in your test code. Next, you examine the code for one of the
describe() structures in detail to understand the steps in writing one.

10.3.3 Describe() and it() test functions

Let’s analyze the syntax of part of the describe() function, which has these elements:

 A beforeEach() function
 A positive test coded as it()
 A negative test coded as another it() test.

First, make sure that you’re able to identify these elements in the following code snip-
pet. Then note that each it() is an asynchronous function, so you wait for its com-
plete execution and return before testing the outcome, using an assert statement.
The first it() demonstrates a positive test case, that of a successful vote by a registered
account holder, and the second it() demonstrates a negative test case in which a
voter account votes for a nonexistent proposal number. Hence, the latter should
revert. Now study the code to understand the concepts of testing so that you can write
your test script for your smart contract:

Figure 10.3 Test outputs for the ballot smart contract

260 CHAPTER 10 Testing smart contracts

describe('Voting', function() {
 beforeEach('Setup contract for each voting test', async function () {
 // register two accounts
 await ballot.register(accounts[1], { from: accounts[0]})
 await ballot.register(accounts[2], { from: accounts[0]})
 });

 it('Success on vote.', async function () {
 //Registration -> Vote
 await ballot.changeState(2)
 let result = await ballot.vote(1, { from: accounts[1]})
 assert.equal(result.receipt.status, success)
 result = await ballot.vote(1, { from: accounts[2]})
 assert.equal(result.receipt.status, success)
 });

 it('Failure on voting for invalid candidate.', async function () {
 //Registration -> Vote
 await ballot.changeState(2)

 //number of proposals is 3: must fail when trying to vote for 10.
 await truffleAssert.reverts(
 ballot.vote(10, { from: accounts[1]}), wrongProposalError
)
 });

10.4 Recap writing of test script
Now that you’ve seen two examples, let’s recap the structure of the test scripts and an
approach to coding one. The general structure of the test script is shown in figure
10.4. Let’s apply the concepts to yet another smart contract, blind auction, and get
familiar with the test script writing skills.

10.5 The blind auction test script
You have seen two examples of coding test scripts. Also, you got a review of the struc-
ture of the test script and the items that may be used to code it. Now let’s reinforce the
concepts with another example: the familiar blind auction example. This smart con-
tract is a more involved smart contract with equally complex test scripts. Use figure

One for each modifier
and function of the smart
contract under test

Test script format

7+3$%+80-69:

Imports, dependencies declaration

Beginning of test script

Initialize set up for each test function
beforeEach()

Independent tests it()

Composite tests: beforeEach(), it()
Figure 10.4 Structure of a test script

261The blind auction test script

10.4 as a guideline to understand the test script. The required dependencies for this
test script are as follows:

const BlindAuction = artifacts.require('../contracts/BlindAuction.sol')
const truffleAssert = require('truffle-assertions');

The next step is initializing the numerous variables of the blind auction. You need to
set up a minimum number of bidders and the bid amounts:

 const success = '0x01'
 let blindAuction
 const onlyBeneficiaryError = 'Only beneficiary can perform this action'
 const validPhaseError = 'Invalid phase'
 const badRevealError = 'Not matching bid'

 // Bidding amount placeholders in ether for fast modification.
 let BID1 = 1
 let BID2 = 2
 let BID3 = 3

 // Account placeholders for user accounts for testing
 let BEN = accounts[0]
 let ACC1 = accounts[3]
 let ACC2 = accounts[4]
 let ACC3 = accounts[5]

After these data definitions, you’re ready to code the test functions (listing 10.4). Be
warned, these functions are much more complex than those for the counter and ballot
smart contracts; blind auction represents a practical application, including encryption
and hashing.

 beforeEach('Setup contract for each test', async function () {

 describe('Initialization and Phase Change.', async ()=>{
 it('Success on initialization to bidding phase.',async function() {…
 it('Success on phase change by beneficiary.', async function() {…
 it('Success on change from DONE phase to INIT phase.',
 async function()
 …}

 describe('Bidding Phase.', async ()=>{
it('Success on single bid.', async function () { …
it('Failure on bid in invalid state.', async function () { …
}

 describe('REVEAL Phase.', async ()=>{
 it('Success on refund of difference when sent value is >
 bid amount.',
 it('Success on refund when sent value is less than bid amount.',…{
 it('Success on refund if bid amount is less than highest bid.', …{

Listing 10.4 blindAuctionTest.js

262 CHAPTER 10 Testing smart contracts

 it('Failure on incorrect key for reveal.', async function () {
 it('Failure on incorrect bid value for reveal.', async function () {
 it('Failure on reveal in invalid state.', async function () {
… }

describe('Withdraw.', async ()=>{
 it('Success on withdraw on loosing bid.', async function () {
…}

describe('Auction end.', async ()=>{
it('Success on end of auction on single bid.', async function () {
it('Failure on end of auction in invalid phase.', async function () {
…}

describe('Full Auction Run.', async ()=>{
it('Success on run with 3 accounts.', async function () {
…}

Let’s examine the test script for the blind auction in listing 10.4. This test script has
the usual beforeEach(), which allows the blind auction contract to be deployed
before every test described by describe(). By now, the describe-it combination
should be quite familiar to you from the examples of counter and ballot smart con-
tracts. Each describe() function has many it() test cases, and each test case tests the
success or failure of a certain condition. The aspect is described in the string message
of the it() test, beginning with a 'Success on' condition for a positive test and a
'Failure on…condition' for a negative test. Five of the six tests in listing 10.4 defined
by describe() are for testing the status of blind auction functions:

 Initialization and phase change
 Bidding phase
 Reveal phase
 Withdraw
 Auction end

Each describe() is further defined by several it()s based on the individual opera-
tions and the corresponding tests. A sixth describe() in listing 10.4 walks through
the complete end-to-end operation of the blind auction.

 There could be two more tests for the withdraw() function: one for the failure of
the winner of the bid trying to withdraw, and one for failure of withdraw() from an
incorrect state. These tests are left as exercises for you to try on your own.

10.5.1 Analysis of describe() and it() code

Download the blindAuctionTest.js from the codebase of this chapter, and examine its
content. Let’s examine one it() of the describe() for the bidding phase to under-
stand how to define and code the describe() test:

263The blind auction test script

describe('Bidding Phase.', async ()=>{
 it('Success on single bid.', async function () {

 // Before bidding
 let balanceBefore = Number(web3.utils.fromWei(await
 (web3.eth.getBalance(ACC1), 'ether'));

 // Bidding
 let bidInWei = web3.utils.toWei(String(BID1), 'ether');
 let valueInWei = web3.utils.toWei(String(BID1+1), 'ether');
 let hashValue = web3.utils.keccak256(..);
 await blindAuction.bid(hashValue, {from: ACC1, value: valueInWei});

 // After bidding
 let balanceAfter = Number(web3.utils.fromWei(await
 web3.eth.getBalance(ACC1), 'ether'));
 assert.isAbove(balanceBefore - balanceAfter, BID1+1);
 assert.isBelow(balanceBefore - balanceAfter, BID1+2);});

There are three parts to this bidding function:

1 Set up or initialize before bidding.
2 Enter statements for bidding.
3 Await completion of bidding, and check the results.

Actual code snippets for these operations can be extracted from the blind auction
code. Note the initialization performed by the let statements. The bidding operation
itself is asynchronous because the transactions need time to run and be recorded on
the blockchain. So you await the completion of the bidding operation. When the bid-
ding is complete, you can evaluate the results by using assert statements—in this case,
assert.isAbove() and assert.isBelow().

10.5.2 Executing the blind auction test script

Now you are ready to run the test script and observe its operation. The commands for
running the test script are the same as the ones that you used for counter and ballot
smart contracts. Download the code blindAuction-contract from the codebase of the
chapter. Start the Ganache test chain by clicking its icon and then clicking Quickstart.
Then navigate to the blindAuction-contract directory. Use these commands to exe-
cute the test script:

npm install
truffle test

The output of the test run shows six sets of outputs resulting in 16 test cases: initializa-
tion and change phase, bidding, reveal, auction end, withdraw, and full auction run.
Each of these test items is represented by describe(). Every describe() has a
beforEach() setting up the tests and several it() tests. Every describe() has a mean-
ingful string parameter that specifies the nature of the test, and that string is output as
shown in figure 10.5, identifying the tests.

264 CHAPTER 10 Testing smart contracts

10.5.3 Full auction run

The test script for the blind auction smart contract includes a complete full auction
test run. This automatic test script is equivalent to manual testing of the single run
through the deployed smart contract. You can open the blindAuctionTest.js and fol-
low along with the description provided here. The code represents these tests:

 The blind auction full test run involves a simulated auction among three bidders’
accounts. The beneficiary deploys the smart contract. Before the start of the bid-
ding process, the balances of all three bidders are saved for later checking.

 In the Bidding phase, each bidder decides on a bid value. A string representa-
tion of this value and the hex value of the secret word are hashed, using the
keccak256 function and a one-time password. Deposit values in the bid are
1 ETH greater than the actual bid amount. The beneficiary advances to the
Reveal phase.

 In the Reveal phase, all bidders send their bid amounts and secret keys to the
smart contract. The contract evaluates the validity and provenance of the bids.
The auction now moves to the Done phase. The beneficiary ends the auction
and transfers the winning bid amount to their account. The result of the auc-
tion is fetched.

 The bidders can withdraw the bidding amount. This amount is returned if the
bid was not successful.

Figure 10.5 Test output from blind auction testing

265Best practices

 The balances of all accounts are fetched again. The result of the auction con-
tains the address of the winner (ACC3, in this case) and the winning bid amount
(BID3). The ending balances are checked. The account balances of bidders
who lost are close to the starting balances because only Txs cost is used up. The
winner of the auction balance is reduced by the bid amount plus any Tx cost.

In this fully integrated run, the script exhaustively exercises the functions of the blind
auction in a single test and verifies that the smart contract works as expected.

10.6 Retrospective
In all three cases, the smart contract testing was successful. This situation may not be
the case in the development stages as a team is developing the functions of the smart
contract. Change some number value in any of the smart contracts discussed in this
chapter, and you’ll get one or more tests failing (X instead of a check in the test out-
put). I recommend that you try this now.

 In a test-driven development, the test script is written first; then the smart contract
is developed to meet the requirements specified in the test. Testing can be used as a
means of maintaining the integrity of a codebase when multiple developers are con-
tributing to its parts. In this scenario, test scripts can be used to make sure that the
code committed meets the requirements.

 The test scripts looked complex, but these test programs are the executable scripts
capturing the manual input testing you did in earlier chapters. The testing introduced
in this chapter is also a formal process that you need to complete before launching
smart contracts into the production environment.

10.7 Best practices
Testing is an important phase in the development of the blockchain-based decentral-
ized application. Here are some best practices:

 Decide on the functions to be tested.
 Decide on the modifiers to be tested.
 Write positive test code that should be successful for correct inputs.
 Write negative test code that fails or reverts (typically, on a modifier or require

statement)
 Use meaningful and concise descriptions for the tests, and note that these

descriptions are output during testing.
 Use 'Success on' and 'Failure on' as prefixes for the positive and negative

tests to identify the type of testing.
 Use a standard naming convention for the test file (<name of the smart

contract>Test.js).

266 CHAPTER 10 Testing smart contracts

10.8 Summary
 Three test scripts discussed in this chapter—counterTest.js, ballotTest.js, and

blindAuctionTest.js—illustrate how to write test scripts for smart contracts.
 The main building blocks or coding elements for a test script are beforeEach(),

it(), and describe().
 The beforeEach() function is defined by code for establishing the preliminary

conditions (before execution) of each test.
 async(), await(), and assert() help in managing execution of functions

during testing. The commands for completing the test setup are simple: initial-
izing the Ganache test chain, installing the required modules using npm
install, and executing the test code using truffle test.

267

A roadmap to
 Dapp development

This chapter provides a roadmap for Dapp development from beginning to end. In
the preceding chapters, you learned how to design, develop, deploy, and test smart
contracts and decentralized web applications (Dapps). You learned the core idea of
blockchain technology and its application. You explored a wide variety of applica-
tions, from a simple counter to asset tokenization. You studied a new language, Solid-
ity, for programming smart contracts, and tools such as Remix and Truffle to process

This chapter covers
 Navigating end-to-end Dapp development guided by

a roadmap

 Designing and developing an educational credentialing
application

 Developing a test-driven prototype on a local test chain

 Configuring and transforming the prototype Dapp for
public deployment

 Creating a distributable web app to enable
decentralized participants

268 CHAPTER 11 A roadmap to Dapp development

and test them. Blockchain programming is not meant for data-intensive image process-
ing; neither is it for computationally intensive scientific computation. In the case of a
smart contract, for example, it is not good practice to use a smart contract for storing
multidimensional image processing or for long-running, complex computations.

 In this chapter, let’s put all these concepts together, not only to reinforce the con-
cepts discussed, but also to comprehend how and why blockchain programming is dif-
ferent from traditional web application development.

 Blockchain programming is not about porting a program in any high-level language,
such as Java, to a smart contract written in Solidity or a similar language. It is about care-
fully choosing the data and transactions to be recorded and the rules for validation and
verification. This chapter will demonstrate the importance of choosing appropriate data
structures, control structures for verification, and notification. You’ll investigate a real
educational certificate application. You can apply the knowledge and skills learned in
earlier chapters to design, develop, test locally, deploy publicly, and interact with a
decentralized solution. End-to-end development is summarized using a real-world use
case. The treatment in this chapter will provide an A-to-Z path for Ethereum-based
decentralized application development guided by a roadmap. You can download the
completed codebase that illustrates all the steps and follow along with the instructions.

 Let’s begin with the motivation for the scenario I chose for this chapter.

11.1 Motivating scenario: Educational credentialing
Educational credentialing is a vast problem domain of high interest to many all over
the planet. It has diverse stakeholders at all levels, from government agencies to
online education providers, traditional universities, and student enrollees. Such a
large problem is typically composed of many smaller problems, some of which can
benefit from a blockchain solution. The blockchain-based solution you’ll explore in
this chapter works within a large, conventional system, improving the scalability and
efficacy of a particular subsystem.

 You may wonder what educational credentials and certificates have to do with
blockchain. A lot. You are fortunate to be able to enjoy online lessons on many sub-
jects and skills through a variety of digital media and in classrooms. Although the
methods of educational delivery have diversified vastly in the past decade, most meth-
ods of evaluating these credentials for certification and degree auditing are still per-
formed manually or by a legacy application, using the records stored in traditional
student databases. What we want is an independent application. Students and other
key stakeholders (advisers) should be able to verify credentials without the help of the
centralized databases, such as to keep track of students’ progress through a certificate
or a degree program.

 You could write a traditional web application that addresses this problem by using
the data from a central student database. But imagine this situation:

 The participants in the program are decentralized.

269The roadmap

 The courses or credentials originate from many educational settings (such as
online courses and work experiences).

 The participants are not associated with any traditional institution, such as a
university.

These characteristics are the motivations for a decentralized application that inde-
pendently verifies that students have fulfilled degree or certificate requirements. This
application is a self-help tool for key stakeholders in a degree or certification pathway
to monitor progress through a program.

 The use case in this chapter is a real certificate program at the University at Buffalo.
This certificate program is for data-intensive computing; the detailed requirements are
at http://mng.bz/4Bja. I am using this scenario to motivate you to look for issues in
your environment that can be addressed by blockchain solutions and can benefit from
the blockchain-based approach. That’s an essential goal of the problem discussed in
this chapter.

11.2 The roadmap
Chapters 2–10 covered pieces of the puzzle in the development of a blockchain-based
Dapp. In this chapter, all these pieces are assembled to solve a single problem. It is a
challenge to view the concepts together, so here is a roadmap to guide you through
the chapter and the Dapp development process. Figure 11.1 closely maps the sections
of this chapter, each section demonstrating a task in the roadmap. Review this road-
map before starting the next section.

Figure 11.1 shows the roadmap from local deployment on the Ganache test chain to
the public implementation involving the public network Ropsten with Infura as web3
provider. Although Ropsten is the network used in this chapter, you can choose to
work another public Ethereum network, including mainnet, simply by configuring
your deployment. The roadmap will help you can navigate this chapter as well as your
future Dapp development.

Begin with clear
problem statement

Analyze and
design: FSM and
contract diagram

Design and code
the smart contract

and test it on
Remix IDE.

Deploy smart
contract locally on

Ganache chain
using Truffle suite.

Test the local
deployment using
automated scripts:
using Truffle suite.

Develop the web
application: UI files

and app.js.

Test the integrated
Dapp: web UI and

smart contract.

Transform Dapp for
public deployment
on Ropsten-Infura.

Create web client
of Dapp for

deployment by
participants.

It can be on any public network
and an Ethereum client.

Figure 11.1 A roadmap to developing Dapps for Ethereum blockchain

http://mng.bz/4Bja

270 CHAPTER 11 A roadmap to Dapp development

11.3 Problem description
Let’s begin by articulating a clear statement for the problem to be solved.

PROBLEM STATEMENT An undergraduate data-intensive computing certifi-
cate (hereafter referred to as DCC) program requires an enrollee to com-
plete four categories of courses and an average grade-point average (GPA)
of at least 2.5 in these courses. Although the details of this program are
stated in an undergraduate catalog page, there is no traditional tool imple-
mented for verifying the fulfillment of a certificate. The objective of this
project is to build an independent blockchain-based tool so that any stu-
dent interested in this certificate program can use this tool. A student
enrolled in the certificate program can self-check their progress through the
program from anywhere.

In other words, any student in the undergraduate program can evaluate their

 Eligibility to enroll in the certificate and to plan their future courses
 Progress through the certificate program as they complete courses
 Certificate fulfillment status, including the GPA requirement, on completion of

all the course requirements

NOTE Students in this situation do not violate Family Educational Rights and
Privacy Act (FERPA) law or any other regulations because they are dealing
with only their own grades and do not access the central student database.

Currently, students have to schedule a one-on-one appointment with an adviser to ver-
ify their fulfillment status for the certificate. This model is not a scalable solution if
thousands of students want to enroll in the certificate program. This DCC-Dapp will
save time for the students as well as the advisers, and streamline the certification pro-
cess for some. More important, the recording on the blockchain of transactions initi-
ated by interested stakeholders will be a valuable resource and institutional data for
future analytics for course planning, advisement, and resource planning.

11.3.1 Context for the DCC application

This problem refers to a specific context of which I have firsthand knowledge, so I am
fortunate to have some specific details. Figure 11.2 gives an overview of the problem
under consideration. The certificate includes four categories of courses and a mini-
mum GPA in these courses. Any stakeholder, student or adviser, can register by using a
decentralized identity the first time, and then log in at subsequent times, add the
courses, and request verification. If the courses entered fulfill the requirements, the
GPA is computed and verified. This DCC system is different from the university’s cen-
tral database, so it does not pose any security or legal threat to that system.

 Review figure 11.2 and imagine a user (say, a student) using this self-serve tool
independent of the central system. This tool puts the decision-making process in the

271Problem description

hands of the student, eliminating the middle person (the adviser). This situation
encourages more participation because the information is readily available to potential
participants. The blockchain recording provides valuable additional data, including
timeline and transaction details. This data can be used for data analysis of the
operations originated by many decentralized users, perhaps to provide better service.

 Let’s design the solution for this problem, referred to hereafter as DCC-Dapp
(Data-intensive Computing Certificate Dapp).

11.3.2 Design choices

You have many choices of application to address this problem:

 A standalone mobile app independent of the central system
 A web or enterprise application integrated with the central student manage-

ment system
 A blockchain-based decentralized application independent of the central

system

The first two choices are traditional; the last one offers the independence of a mobile
app and at the same time keeps track of the transactions on the immutable ledger of
the blockchain. That’s the design you’ll explore in the following sections.

Register

Login

Add
courses

Verify
status

Stakeholder
(such as student)

Initiates

Prerequisite
courses (2)

Core
courses (3)

Domain-specific
course (1)

Capstone
course (1)

Courses for the certificate

Prerequisites done

Core courses done

Domain-specific courses done

Capstone course done

GPA >= 2.5

Output on completion of requirements

Figure 11.2 DCC concept: certificate courses, stakeholder functions, and output

272 CHAPTER 11 A roadmap to Dapp development

11.4 Analysis and design
Now let’s apply the design principles you’ve learned so far to design a solution for the
problem. Using figure 11.2, DCC-concept, as a guideline, identify the roles, rules,
assets, and functions. This step will enable you to think through the problem and
design a contract diagram and its elements:

 Roles—The roles of DCC are defined by students, advisers, and anybody who
wants to know more about the DCC certificate program. These people are asso-
ciated with the university and identified in the student management system with
a person number. In particular, it is expected that this tool is meant for and will
be used by students interested or enrolled in the DCC program. The person-
number identity of the university system is the tether linking the DCC applica-
tion to the larger university management software. Each user of DCC holds a
decentralized (self-generated) globally unique identity of 256 bits, and this iden-
tity is mapped on their local university identity of the person number. (Recall the
generation of a decentralized identity in chapter 8 using a web tool.)

 Rules—The first rule is about the identity of the user. A student self-registers
with the person number, an identity assigned by a university system. This rule
enables the decentralized blockchain identity of an enrollee to be mapped onto
the person number of the centralized system. The second rule is that only a
registered user (validStudent) can add courses to the DCC application.

NOTE The msg.sender attribute of a blockchain transaction holds the 256-bit
decentralized identity of the sender of the transaction.

 Assets—Assets are the course categories, allowed courses in each category, and
GPA. Each student user with a (blockchain-based) decentralized identity has
their own set of data:
– An efficient structure of courses and grades
– A mapping of their 256-bit address to corresponding person number

 Events—Fulfillment of requirements of the categories of courses by a user is
indicated by emitting an event. Events emitted are logged in the block. These
logs are used as notifications to users as well as for analysis. Events can be emit-
ted on completion of each category of courses and also on completion of the
certificate. The emitted events can be displayed as notifications in the UI as cer-
tificate status.

11.4.1 Operation flow and finite state machine

Let’s examine the DCC operations and their flow by using a finite state machine
(FSM) diagram (figure 11.3). This figure also gives you a rough idea of the sequence
of interactions by a user.

 This DCC-Dapp is a long-running program because the completion of the requi-
red courses may take as long as four years. More important, the university may want a

273Analysis and design

historical ledger of DCC timeline and engagement. Users may use this DCC-Dapp as
their progress sheet through the certificate program. With this context, here are the
numbered functions, as shown in figure 11.3:

1 Register. A user identified by a 256-bit decentralized account address registers
their person number associated with the university or institution. This opera-
tion is done only once, at the beginning of the process.

2 Log in. For subsequent access to the DCC-Dapp, login with the person number and
a matching decentralized identity is required; otherwise, the login will be rejected.

3 Add a course. To add a course to be considered for the certificate program, the
user enters the category, course, and grade in the course.

4 Check eligibility. This function determines the user’s standing in the certificate
program in five criteria: four course categories and overall GPA.

5 Replace a course. This function replaces a course in the certificate program. The
user probably will add a different course to improve their GPA or update their
grade after retaking the course.

These operations will guide the design of the smart contract for the DCC-Dapp. Other
support functions may be required to complete the design of the smart contracts.

11.4.2 Contract diagram

Consider the functions depicted in figure 11.3 and the discussion of the roles, assets,
and events to obtain the contract diagram, as shown in figure 11.4. A contract diagram
lists the data structures, events, modifiers, and function headers of the contract.

 Using the details from the problem statement (section 11.3), design the DCC con-
tract diagram.

Start

Regsiter

Login

1. First time access to DCC,
self-register

2. Subsequent access
to DCC

Add
course

3. Select category, course, and grade

Replace
course

Check
eligibility

 4. Verify and output status

5. Replace a course
or grade.

Figure 11.3 FSM for user operations of DCC-Dapp

274 CHAPTER 11 A roadmap to Dapp development

11.5 Developing the smart contract
Use the contract diagram, develop the smart contract, and do a quick test in the
Remix IDE. After a successful test in Remix, open the DCC-Dapp codebase to review
the smart contract in the DCC-contract directory. I explain these steps in detail next.

11.5.1 Data structures

Listing 11.1 shows the data structure that stores the data about a student’s courses, the
modifiers, the events, and the functions. The names of the items are self-explanatory,
and they follow camel-case notation.

11.5.2 Events

There are six event definitions, one for each category of courses. An event is emitted
when the courses in a category are completed. The code also includes two more
events: one emitted when the GPA is satisfied and one that shows the current GPA
value.

DCC

struct Student {uint personNumber;
 //course categories details}

mapping (address=>Student) registeredStudents;

event preRequisiteSatisfied()

event coreCoursesSatisfied()

event domainRequirementSatisfied()

event projectRequirementSatisfied()

event GPARequirementSatisfied()

event GPA()

modifier checkStudent (..)
modifier validStudent(..)

function registerStudent (uint personNumber)

function loginStudent (uint personNumber) view

function addPreRequisiteCourse(...)

function addCoreCourse (...)

function addDomainSpecificCourse (...)

function addCapstoneCourse(...)

function checkEligibility(...)

function self-destruct(...)

DCC specific data

DCC events

DCC functions

DCC modifiers

Figure 11.4 DCC
contract diagram

275Developing the smart contract

11.5.3 Modifiers

There are two modifiers. checkStudent allows a student to register only once, and
validStudent enforces that only a valid student is permitted to add courses. In other
words, before a student adds any courses, their person numbers (identity in the uni-
versity system) and identity in the decentralized system (a 256-bit account number)
should be registered in the DCC system.

11.5.4 Functions

You can also observe in listing 11.1 that the contract diagram has functions to add
courses, not remove them. The purpose of removing a course would be

 To replace the current grade with the better grade for prerequisite and core
courses.

 To replace the current course with another course with a better grade. The
grade replacement is applicable to any category; the case of course replacement
is applicable only to a domain-specific course and the capstone course.

The function to add a course can itself be reused to carry out the remove and replace
operation. That is, if a user adds a course in the category that already has an existing
course, it is overwritten. This operation accomplishes the removal and replacement of
a course. When you’re implementing solutions, you ought to be thinking about the
possibilities for reusing functions in the manner shown here. Also note the inclusion
of the self-destruct function, which is useful for undeploying the contract, especially
during the testing phases on public networks.

 Among the functions, code for addCoreCourse() is shown in listing 11.1. It is
simple: If the value of the parameter course is 115 or 116 (core courses), the grade
for the course is updated. The variables for courses 115 and 116 do not hold any data
except for the grade, thus minimizing storage. Storage needed for each student is
about nine words.

contract DICCertification{
 uint constant private MINIMUM_GPA_REQUIRED = 250;

 struct Student {
 uint personNumber;

 uint prereq115;
 uint prereq116;

 uint core250;
 uint core486;
 uint core487;

 uint domainSpecificCourse;
 uint domainSpecificGrade;

Listing 11.1 DCC.sol

Data structure for each
student participant

276 CHAPTER 11 A roadmap to Dapp development

 uint capstoneCourse;
 uint capstoneGrade;

 }

 mapping(address => Student) registeredStudents;

 event preRequisiteSatisfied(uint personNumber);
 event coreCoursesSatisfied(uint personNumber);
 event GPARequirementSatisfied(uint personNumber);
 event projectRequirementSatisfied(uint personNumber);
 event domainRequirementSatisfied(uint personNumber);
 event GPA(uint result);

//---
// Modifiers
//---
 modifier checkStudent(uint personNumber) {
 require(registeredStudents[msg.sender].personNumber == 0,
 "Student has already registered");
 _;}

 modifier validStudent(){ //#D
 require(registeredStudents[msg.sender].personNumber > 0,
 "Invalid student");
 _;}

//---
// Functions
//---
 function registerStudent(uint personNumber) public
 checkStudent(personNumber) {
 registeredStudents[msg.sender].personNumber = personNumber;
 }

 function loginStudent(uint personNumber) public view
 returns (bool){
 if(registeredStudents[msg.sender].personNumber == personNumber){
 return true;
 }else{
 return false;
 }
 }

 function addPreRequisiteCourse(uint courseNumber, uint grade)
 public validStudent {

 if(courseNumber == 115) {
 registeredStudents[msg.sender].prereq115 = grade;
 }
 else if(courseNumber == 116) {
 registeredStudents[msg.sender].prereq116 = grade;
 }
 else {

Mapping from account
address to student structure

Event
definitions

Modifier definitions

Functions
for adding
a student
user

Functions
for adding
courses

277Developing the smart contract

 revert("Invalid course information provided");
 }

 ... }

 function addCoreCourse(uint courseNumber, uint grade) public
 validStudent {
 { ...}

 function addDomainSpecificCourse(uint courseNumber, uint grade) public
 validStudent {

 ...}

 function addCapstoneCourse(uint courseNumber, uint grade) public
 validStudent {

 ... }

 function checkEligibility(uint personNumber) public validStudent
 returns(bool) {

 ...
// courses in each category are examined and event emitted if satisfied
// overall GPA computed if all course requirements are satisfied
 if(registeredStudents[msg.sender].prereq115 > 0 &&
 registeredStudents[msg.sender].prereq116 > 0) {

 preRequisitesSatisfied = true;
 emit preRequisiteSatisfied(personNumber);
 totalGPA += registeredStudents[msg.sender].prereq115 +
 registeredStudents[msg.sender].prereq116;
...
...
 }}

CODING THE FUNCTIONS

Download the DCC.sol from the codebase, and review it. Observe the simplicity of the
data structures and the functions. I’ll discuss just two snippets:

 Adding a prerequisite course (115 or 116)
 Checking the eligibility of the prerequisite course requirement of the DCC

Here is the function for adding a prerequisite course:

function addPreRequisiteCourse(uint courseNumber, uint grade) public
validStudent

{
 if(courseNumber == 115) {
 registeredStudents[msg.sender].prereq115 = grade;
 }
 else if(courseNumber == 116) {
 registeredStudents[msg.sender].prereq116 = grade;
 }

Functions for
adding courses

Function for
determining

certificate
eligibility

278 CHAPTER 11 A roadmap to Dapp development

 else {
 revert("Invalid course information provided");
 }

In the header of the function, the modifier validStudent enforces the condition that
the caller of this function (sender of the Tx: msg.sender) must have a registered iden-
tity. The parameters passed to the function are the course number and the grade for
that course. The body of the functions checks the course number and updates the
course grade—as simple as that. The code is for the addition of a new course (115 or
116) and replacement of grade for a course. The revert statement at the end is to
handle any exceptional or invalid input.

 The code for adding courses in other categories is similar. Here is the snippet for
testing fulfillment of the core courses:

if(registeredStudents[msg.sender].prereq115 > 0 &&
 registeredStudents[msg.sender].prereq116 > 0) {

 preRequisitesSatisfied = true;
 emit preRequisiteSatisfied(personNumber);
 totalGPA += registeredStudents[msg.sender].prereq115 +
 registeredStudents[msg.sender].prereq116;

In this case, the code checks to see whether courses 115 and 116 are present by check-
ing whether the grade recorded is greater than 0. If so, it sets the flag preRequisite-
Satisfied to true, emits an event indicating that fact, and adds up the grades to
compute the overall certificate GPA. Also, note that the emitted event has the person
number as a parameter, enabling external applications to access emitted events.

DESIGN CHOICES

There are choices in the data structures and approaches used in the design of the smart
contract. Consider the choices and choose the optimal ones for the current design.
Here are some design choices made for the DCC smart contract:

 On-chain data structure for student data—The structure representing that data can
be defined as off-chain data, and only the hash of this data structure is stored
on-chain for security and immutability of the DCC data. If the data is off-chain,
the rules that verify the data will have to be off-chain operations, and verifica-
tion will not be recorded on the blockchain. So the choice is keeping the mini-
mal data about the certificate courses on-chain. This data is a small (nine
words) subset of the student’s data in the external database of the larger system.

 Person number versus 256-bit account number as parameter in events—The parameter
for all the emitted events is the person number versus the 256-bit account
address, because the larger system outside the university identifies the user by
person number. Although both options may serve as markers of the Tx issuer, a
person number is a typical identifier in the university system. From a nondevel-
oper point of view, if they are shown the transaction details, people in the context

279Developing the smart contract

of the university would understand person numbers better. That is the reason for
the design choice of person number as a parameter for the events emitted.

 In theory, we should be creating the test cases first before coding the contract,
but we’ve chosen to focus on the smart contract design first to understand the
DCC concept. So the formal testing with scripts is performed after the explora-
tion with Remix IDE. This is another design choice we made to enable better
understanding of the DCC problem.

INCREMENTALLY ADD CODE

Incrementally add the code for other categories of courses by adapting the function
to add a prerequisite course discussed earlier in this chapter. Also, add the code in the
checkEligibility() function for verifying the fulfillment of the category of courses,
emitting events, and computing the GPA by following the pattern discussed in the
second snippet in the same section.

TESTING IN REMIX IDE
Load the smart contract DCC.sol into the Remix IDE’s editor, and debug any compile
errors. Deploy the smart contract in the JavaScript VM, and observe the UI that appe-
ars after deployment (figure 11.5). You can see an interface with a one-to-one map-
ping to the functions in the contract diagram and the code that followed it. Simulate a
single student registering, logging in, and adding courses and checking eligibility to
make sure that all the functions work as expected. This UI of the Remix IDE for
DCC.sol will serve as a guideline for the web UI design later.

 Observe that the loginStudent() function is like a gatekeeper that allows only
registered students to add courses. It is a view function, so it is not recorded on the
chain. It might be interesting for audit purposes to keep a trace of login activities. In
that case, you can remove the keyword view from the function header definition.

Figure 11.5 UI on Remix IDE for the DCC.sol smart contract

DCC user interface on Remix:
compare the buttons with the
design diagram and contract diagram.

Register only once:
 first access.

Log in any number of times
for subsequent access.

280 CHAPTER 11 A roadmap to Dapp development

11.6 Local deployment
The next step in the roadmap is navigating from the Remix IDE to test the DCC.sol on
the local Ganache test chain. By now, you should be familiar with the sequence of
these steps. Click the Ganache icon, and click Quickstart. Wait for it to start. Down-
load the codebase for DCC-Dapp-local.zip from the chapter’s codebase. Unzip it.
Then navigate to DCC-contract.

 The commands

cd DCC-contract
truffle migrate --reset

compile and deploy the contracts in the contracts directory. There are two contracts:
DCC.sol and Migrations.sol. As they are compiled and deployed, you’ll see several
messages, ending with the final message that two contracts were deployed, as shown
in figure 11.6. These messages indicate that two smart contracts—DCC.sol and Migra-
tions.sol—were deployed successfully. Recall that the migration process itself is writ-
ten as a Solidity smart contract. The next step is testing this DCC.sol deployed on the
Ganache test chain.

11.7 Automated testing using truffle
The next step in the roadmap is automated testing of the smart contract. Before
moving on to develop the web application of the DCC-Dapp, test the DCC smart con-
tract, using the JavaScript tests discussed in chapter 10. (Refer to chapter 10 if you
need a refresher on automated test-driven development.) The automated test script

Figure 11.6 Output for successful local deployment

281Automated testing using truffle

for DCC.sol is provided in DCCTest.js in the codebase for this chapter. Review the
directory structure and contents of the test directory. At this step, the directory struc-
ture should be as shown in figure 11.7.

 Now you are ready to run the test. Navigate the DCC-contract directory. Make sure
that the Ganache test chain is ready. Then run the truffle test command. The com-
mands are repeated here for review:

cd DCC-contract
npm install
truffle test

The output shows positive and negative tests. Figure 11.8 shows only a partial list of 38
tests, some positive and some negative, for the category capstone project. DCCTest.js
also contains scripts for the other three categories (prerequisites, core, and domain-
specific courses). Just imagine running these 38 tests manually!

 Recall from chapter 10 that the messages for the positive test begin with 'Success
on' and the output messages for negative tests begin with 'Failure on'. Review the
extensive DCCTest.js provided in the test directory, and use it as a model for your
future test scripts. The script includes individual tests as well as a complete run testing
the entire flow through the smart contract. It is good practice to test the smart con-
tract before coding the web application and UI. Refer to chapter 10 for more details
about writing the test script.

DCC-contract

DCC-Dapp

test

DCCTest.js

Execute test script
using truffle test

Write and save test script
in test directory

contracts
truffle-config.js

DCC.sol Migrations.sol

Application part yet to be added

DCC-Dapp-master

Figure 11.7 Directory structure for the smart contract part of DCC

282 CHAPTER 11 A roadmap to Dapp development

11.8 Developing the web application
Now that you have the smart contract coded and tested, you are ready to develop the
DCC-app. Review chapters 6–10 for details on developing the web application part of the
Dapp. The Dapp has files for installing the required modules (package.json) and setting
up the web UI (index.js, src). The web3 API calls and code that connect the web UI to
the smart contract are in app.js, available in the DCC-app code provided with this chap-
ter. You can review these files and use them as a base for your web application develop-
ment. Compare the diagram in figure 11.9 with the directory structure of the codebase.

Figure 11.8 Output for autotesting DCC.sol

DCC-Dapp

DCC-contract

testcontracts truffle-config.js package.jsonindex.js

DCC-app

src

js
app.js

other web filesFigure 11.9 Directory
structure including DCC-app

283Developing the web application

The UI design and the smart contract functions determine the coding of the app.js.
The smart contract details are discussed in section 11.5. Now let’s discuss the UI
design followed by the app.js code.

11.8.1 UI design

The opening screen of the DCC-app has two functions—Register and Login, as
shown in figure 11.10—and both have the same names as the corresponding smart
contract functions. A first-time user uses the Register function by providing the per-
son number in the box provided. For the subsequent access, a user uses the Login fun-
ction once again with the person number as a parameter. This parameter value
entered should have been registered. Otherwise, Login will revert.

Successful registration and login will open the interface for adding courses, as shown
in figure 11.11. These screens are the only two UI screens. Keep the UI design simple
and intuitive.

Figure 11.10 Opening screen, DCC-Dapp

Categories and
courses allowed in
each category

User data entry Output area for displaying
the progress

Figure 11.11 UI for adding courses

284 CHAPTER 11 A roadmap to Dapp development

The UI for adding courses has three panels:

 The first panel lists the categories of courses and list of allowed courses in each
category—prerequisites, core courses, domain-specific courses, and capstone
project courses.

 The second panel shows the university logo, below which are drop-down boxes
for selecting the category of courses and courses in each category.

 The third panel shows the button for checking eligibility and another button
(Destroy Contract) for undeploying the contract. Destroy Contract is only in
the test version and will not be featured in the production version of the UI.

 The blank space in the third panel of figure 11.11 is for displaying the fulfill-
ment status of each category of courses and the GPA requirement for the DCC
program.

Now if you click the Check Eligibility button before adding the courses, you’ll see the
screen shown in figure 11.12, which shows that none of the criteria for the certificate is
satisfied. Initially, when no requirement is satisfied, all the items have X marks against
them, as shown in figure 11.12. When all the requirements are met, you see check
marks against them. When only some of the requirements are satisfied, the panel shows
a combination of X and check marks. If all the course requirements are met, the GPA
is computed, verified, and displayed. These details are shown in figure 11.12.

Figure 11.12 UI with none and all of the course requirements satisfied

285Testing the DCC-Dapp

11.8.2 Coding the app.js

You can add code for the structural elements of the UI and code app.js to link the user
requests to the smart contract functions. The UI operation of adding a course and
course category together decides the smart contract function to call from app.js. The
two inputs to add a course are passed as parameters to the function called. Review this
logic in the code snippet of app.js:

...
else if (course_type == "core") {
 App.contracts.Certification.methods.addCoreCourse(course, grade)
 .send(option)
 .on('receipt', (receipt) => {
 App.courseGrades(course, grade);
 })
 .on('error', (err) => {
 console.log(err);
 });
 }

The snippet shows the call to addCoreCourse of the smart contract with course number
and grade as parameters. When this transaction is confirmed, the grade is saved in the
web context for updating the UI. This snippet is the pattern for coding the other three
categories of courses. Two data files support the app.js code: the data.json file maintains
the user grades for display, and grades.json maps the numeric values of the letter gra-
des. Locate and review these files. You can use JSON format for keeping any data local
to the web; this format also maps well with many databases, such as Mongo DB.

11.9 Testing the DCC-Dapp
The smart contract was already deployed when we tested it earlier, but you can rede-
ploy it for completeness. Make sure that the Ganache local test chain is running. Now
deploy the DCC-app on the Node.js server and test the integrated system. By now, you
should be familiar with these steps:

cd ../DCC-app
npm install
npm start

Open a Chrome browser (localhost:3000), and use MetaMask to restore the accounts,
using the seed phrase of the Ganache test chain. Restart the browser, and execute
these operations:

1 Register with 13567890 as the person number.
2 Log in with the same number as a parameter.
3 Then add courses and grades for each category in the interface (middle panel).
4 Check eligibility by clicking the Check Eligibility button at any time as you add

courses.

286 CHAPTER 11 A roadmap to Dapp development

5 You can add a course again. The previous entry is overwritten. This is how the
replacement of a course is implemented.

6 Check eligibility after entering all the courses.
7 For another person, you can register, login, and enter grades of C or lower for

the courses. Observe GPA eligibility failing.

That completes minimum testing. I am sure that student users will find creative ways
to use this tool to plan their courses when you leave the information at their fingertips
through this DCC-Dapp. You can exercise the Dapp for other combinations and
improve on the basic UI design provided in this chapter.

11.10 Public deployment
So far, you’ve completed deploying and testing the Dapp on a local test chain. Now it’s
time to move to the next step in the roadmap: deployment on a public chain. We discus-
sed the details of public deployment in chapter 8. The public chain you’ll use is Rops-
ten, and the deployment infrastructure (web3 provider node and gateway) is hosted on
Infura. Here are a few steps you’ll need to complete before you begin the public deploy-
ment process. If you have all these items ready from chapter 8, you can reuse them.
Refer to chapter 8 for details on the Ropsten and Infura public infrastructures:

 You’ll need a Ropsten account address and seed mnemonic to restore this
account (chapter 8). Save the 256-bit account number and the mnemonic in a
file (such as DCCEnv.txt) for use during deployment and interaction.

 You must have an ether balance in the Ropsten account, which you can get
through a Ropsten faucet (chapter 8).

 You must have an Infura account. Sign up at Infura, and create a project. Note
the Ropsten endpoint number. Save the endpoint in the DCCEnv.txt file.
Figure 11.13 shows a sample Infura endpoint.

These are actual hexadecimal numbers
representing the Infura endpoint.

Figure 11.13 Ropsten
endpoint on Infura

file:///C:\Users\bina\Documents\MyBook\BIA\Ch11\infura.io

287Public deployment

11.10.1Deployment on Ropsten-Infura

In this section, you’ll learn to transform a Dapp tested in a local test environment for
deployment on public infrastructure. In this case, the Dapp is DCC-Dapp, and the web3
provider and the blockchain network are Infura and Ropsten, respectively. Download
the codebase for DCC-Dapp-public.zip from the code base. Here are the steps for
deployment on Ropsten. Unzip or extract all the files of DCC-Dapp-public.zip. Navigate
to the DCC-Dapp master, and use DCC-contract and DCC-app for these steps:

1 In the DCC-contract directory, update truffle-config.js to include an HDWallet-
Provider for account management and Ropsten endpoint value on the Infura
project (shown in figure 11.13). Save the account seed phrase mnemonic for
your Ropsten account in a file called mnemonic.secret. You can download the
truffle-config.js in listing 11.2, review the changes, and update it with values spe-
cific to your deployment. You’ll have to change two items: the mnemonic and
the ropsten-infura endpoint.

const HDWalletProvider = require('@truffle/hdwallet-provider');
// file mnemonic.secret contains the ropsten mnemonic
//for connecting and deploying.
const fs = require('fs');
const mnemonic = fs.readFileSync("mnemonic.secret").toString().trim();

module.exports = {

 networks: {
 ...

 ropsten: {
 provider: () => new HDWalletProvider(mnemonic,
 `https://ropsten.infura.io/v3/...`),
 ...

2 Navigate back to DCC-contract, and run the command to deploy the contract
on the Ropsten network:

npm install
truffle migrate –-network ropsten

You should observe messages with the deployed smart contract address high-
lighted (figure 11.14). Be patient; the deployment of DCC smart contract will
take some time because it has to contend with all the other Txs on the public
Ropsten network. Save the smart contract address generated in the DCCEnv.txt
file (or any location of your choice) for use in the next step.

Listing 11.2 truffle-config.js

HDWalletProvider of the truffle
for account management

Obtain mnemonic
from a secret file

Fill in the
ropsten-infura
endpoint here.

288 CHAPTER 11 A roadmap to Dapp development

3 Now that the smart contract has been successfully deployed, navigate to the web
application part DCC-app, and update the app.js. The app.js accesses the smart
contract function, using the address of the deployed smart contract and the
application binary interface (ABI). Locate the smart contract address at the top
of the app.js file, and replace it with the newly deployed smart contract address.
I’ve already added the ABI for the DCC smart contract in the app.js code.

4 Execute the commands to deploy the web application to access the smart con-
tract. The web application will be on your local machine but will access the
smart contract on the Ropsten network:

npm install
npm start

5 Now you are ready to interact with the application, using your web page,
MetaMask, and the Ropsten account. Make sure that you restore your Ropsten
network account in your MetaMask, using the mnemonics from the DCCEnv.txt
file. Reset the accounts and reload the web page before you start testing the
public deployment. After this, the interaction with the Dapp will be the same as
before with the local deployment. Refer to the UI diagrams (figures 11.10 and
11.11) as guidance when interacting with the DCC-app.

Figure 11.14 Output of deployment on Ropsten

289Public deployment

6 It is important to note that transactions will take time to confirm. Be patient.
Your transactions coexist on the network with the transactions of many other
public Dapps on Ropsten and their participants. You can observe the status of
the transaction you initiated by clicking MetaMask, which will indicate whether
the Tx is pending, confirmed, or failed.

That completes the testing of the public deployment by the administrator, deployer, or
a tester. But the student, a user, or a decentralized participant does not have to worry
about deploying the smart contract (as shown in steps 1–3). All they need to deploy is
the web application Dapp-app part of the Dapp. That’s what you’ll do in the next section.

11.10.2Create web-client for distribution

The smart contract is deployed only once, by the administrator, but used by many.
These participants and student users need to deploy only the web application interface
to interact with the deployed contract. Think about this for a few minutes. This client
module is located in the DCC-Dapp-app-only.zip file. Unzip or extract all its
components. It has only DCC-app. When you develop a blockchain application, you’ll
distribute only this part to the users, who may not be even aware that this is a
blockchain-based decentralized application. They need to install the required modules
and start the web client and interact. The prerequisite for executing the DCC-app is
having Node.js and npm installed:

1 Download the DCC-Dapp-app-only, and unzip it. In src/js/app.js, update the
smart contract address to the newly deployed smart contract address from the
DCCEnv.txt file, and save it. (The smart contract should have been deployed by
the administrator as described in section 11.10.1, so you should know the smart
contract address.)

2 Navigate to DCC-app, and execute these commands to install the requires
node modules and start the Node.js server:

npm install
npm start

3 Interact with the smart contract deployed in section 11.10.1. Try distributing
this codebase (only the DCC-Dapp-app-only.zip) to your friends, and let them
interact with the smart contract you deployed.

You can use these steps to work with the web client of the other applications you may
have developed or may develop in the future. Also, you distribute only the app part of
the Dapp—in this case, DCC-Dapp-app—to the decentralized participants.

290 CHAPTER 11 A roadmap to Dapp development

11.11 Retrospective
The code for this blockchain-based project requires development of many parts, with
proper use of techniques, tools, and configurations. It is complex, so you need a road-
map with clear directions for navigating the various parts. This chapter provided that
roadmap as well as sample code to illustrate the waypoints in the roadmap. It took you
all the way from a problem statement to local deployment of a prototype, testing, pub-
lic deployment, and finally a distributable client application. It captured the concepts
discussed in chapters 2–10 in a single application. This chapter may serve as a one-
stop model for your Dapp development projects.

11.12 Best practices
This chapter allowed you to review best practices to follow when you are developing
Dapps:

 Carefully examine the problem, evaluate the context, analyze the traditional
solutions, and discuss any alternatives, if available.

 Design before you start developing the solution. Use standard diagrams such as
a contract diagram and state diagram to represent the design.

 Use the FSM diagram and contract diagram as guidelines for developing the
smart contract and user interface.

 Use standard directory structure and locations for the critical files. For XYZ-
Dapp, use XYZ-contract, XYZ-app, XYZ.sol, and app.js.

 Use modifiers for representing rules. Modifiers revert transactions that don’t
meet the rules, so they help prevent the unnecessary recording of transactions
on the blockchain.

 Use and emit event definitions to indicate significant milestones. These events
emitted are recorded on the block and can be used for UI notification as well as
postdata analysis.

 Design the smart contract with only the required data structures and opera-
tions. The smart contract has to be concise and precise, with simple, straightfor-
ward logic. Avoid loops and complex computations by creatively moving these
operations to the nonblockchain components of the Dapp, such as to app.js.

 Use the Truffle and Ganache test environments to test the smart contract’s
operation before deploying the Dapp on a public network such as Ropsten.

 Deploy the Dapp on the blockchain client node in a cloud-environment such as
Infura.

 Design a simple, intuitive UI for development purposes. This design will enable
and guide the team later to develop a production-quality UI (a topic that is
beyond the scope of this book).

 Test the integrated Dapp thoroughly before distributing it to stakeholders. Dis-
tribute only the client application part to the peer participants, who may be
using a lightweight web client or mobile client.

291Summary

11.13 Summary
 The blockchain-based solution is typically part of a larger system. In this chap-

ter, DCC-Dapp for facilitating a certificate program is part of a larger university
system.

 A roadmap is helpful for analyzing, designing, and developing a blockchain-
based decentralized application solution for a problem.

 Analyzing a problem for its roles, rules, data structures, functions, and events
emitted guides the development of a smart contract.

 A single complex off-chain operation for adding courses is split into four
smaller smart contract functions (add prerequisite, add core, and so on) for
simpler transactions to be recorded on-chain.

 JavaScript testing scripts and the Truffle test tool help in automating smart con-
tract testing.

 Dapp development begins with smart contract development, its local deploy-
ment, and testing; migrating it to a production infrastructure; and creating a
deployable module for the participants.

 Techniques such as events, off-chain and on-chain data and operations, and
modifiers for verification and validation help in designing effective blockchain-
based solutions.

 Tools such as Remix IDE, Truffle suite, Node.js-based package management,
Infura web3 provider, Ropsten public network, and MetaMask wallet help in
organizing the codebase and configuring it for standard deployment and testing.

 The DCC-Dapp codebase provides a one-stop model illustrating tools, tech-
niques, and best practices for your Dapp development projects.

292

Blockchain:
 The road ahead

Any emerging technology will experience challenges as it is maturing. Blockchain
is no exception. This field is churning with activities and initiatives in a quest for
continuous improvement in technology. Although blockchain is a brilliant technol-
ogy for trusted transactions, social interaction, and commerce, it is also open and
decentralized. Openness and inclusivity of decentralized participants are two of the
many impediments to the ready adoption of the technology. Dapps deployed on

This chapter covers
 Exploring decentralized identity management

 Understanding consensus among decentralized
participants

 Reviewing scalability, privacy, security, and
confidentiality

 Analyzing public, private and permissioned
blockchain networks

 Capturing the scientific research behind
blockchain concepts

293Self-managed identity

the blockchain address these concerns by enabling trusted transactions. Now that you
are armed with the knowledge from earlier chapters, I encourage you to examine the
challenges at all levels of the blockchain stack, from decentralized application devel-
opment to contribution to protocol improvements.

 In this chapter, you’ll learn about some nonfunctional attributes that are relevant
to blockchain applications. You need to pay attention to these attributes while design-
ing and developing Dapps. This chapter will provide a high-level view of these attri-
butes, challenges, existing solutions, potential opportunities, and the road ahead.

12.1 Decentralized identity
What is your name? How are you identified? Identity is a fundamental requirement
for interacting with any system, computing or noncomputing. You need an instru-
ment such as a driver’s license to identify you for many of your routine activities, such
as cashing a large check or taking an airline flight. You use a student ID card to avail
yourself of the services of a university. But these identities are issued by a central
authority after verification of your credentials, such as your Social Security number.
For decentralized applications, there is no central authority for assigning identity for
the participants. A decentralized system is made up of unknown participants who are
potentially from anywhere in the world. In such a system, the challenge is how to

 Define a unique identity for participants
 Create and assign it to the participants
 Make it unique for every participant
 Manage (restore and remember) it

In addressing these concerns, blockchains rely on two fundamental concepts:
cryptographic algorithms and larger address space (256 bits versus 64 bits). As you’ll
recall from chapter 5, the Ethereum identity of a participant is 160 bits. It is derived
from a private-public key pair of 256 bits, using hashing algorithms for uniqueness,
and can be self-generated. This kind of self-managed identity is an important
distinction between traditional centralized applications and blockchain-based
decentralized applications.

12.2 Self-managed identity
To understand the concept of self-managed identity, let’s create it and do some block-
chain operations with it. You’ll also collect test Ethereum cryptocurrency with it. First,
you’ll generate a private-public key pair, generate a mnemonic for it, and use that
mnemonic to extract account addresses to populate a MetaMask wallet. This mne-
monic represents a deterministic set of account addresses for your digital wallet, such
as MetaMask. (Deterministic means that the same unique set of accounts is generated
for a given mnemonic representing a private key.) You performed these steps within
the context of developing Dapps in chapters 5 and 8:

294 CHAPTER 12 Blockchain: The road ahead

1 Open your Chrome browser.
2 Link to the website https://iancoleman.io/bip39.

Figure 12.1 shows the screenshot of the web page. You can see that this web
tool can generate addresses for other coins (cryptocurrencies) too.

3 Make these three choices, as indicated in the figure:
– Generate a 12-word mnemonic.
– Choose English as the language for the mnemonic, and press the Return key.
– Choose ETH (Ethereum) as the coin or cryptocurrency.

4 The mnemonic appears in the BIP39 mnemonic box. Copy it, and keep it safe
and secure. The mnemonic generated for me was later dirt alert wear exotic hotel
nasty thunder comfort powder alarm build.

You can retrieve accounts and their balances by using this mnemonic. Next,
let’s obtain a seed phrase.

SECURE YOUR SEED PHRASE The seed phrase represents your private key. If
the seed phrase is compromised (stolen or given away), the loss is equivalent
to losing a credit card from your wallet. The person who gets hold of the seed
phrase can restore the accounts on their wallet and divert the funds there.

Other information
....
....

1. Change this to 12

2. Choose English

3. Choose Ethereum

Mnemonic will appear here

Figure 12.1 BIP39 interface to generate a seed phrase/ mnemonic from a private key

https://iancoleman.io/bip39/

295Self-managed identity

In the next steps, you’ll create an account address to represent your decentral-
ized identity. With this identity, you’ll be able to collect test Ethereum crypto-
currency for transactions on the Ropsten network.

5 Click the MetaMask icon in your Chrome browser.
6 Choose the Ropsten network as shown in figure 12.2
7 You may choose other networks for your later explorations.
8 Click Import Account Using Seed Phrase at the bottom of the MetaMask drop-

down box.
9 In the screen that appears in figure 12.2, enter the mnemonic you generated

earlier.
10 Enter a password, repeat it to confirm, and click Restore. You see your account

number in the MetaMask drop-down box.
My account address after this exercise was 0xCbc16bad0bD4C75Ad261BC8

593b99c365a0bc1A4. Here, 0x indicates that what follows is hexadecimal, fol-
lowed by 20 bytes or a 160-bit address. This address is your decentralized iden-
tity; you can share it with any application to interact with it. You can give out the
account numbers but not the mnemonic representing the private key. You can
create many account numbers similar to the numbers of your checking, savings,
college, and home accounts, and so on.

11 In MetaMask, click the Account 1 logo, and in the drop-down box that appears,
select Create Account to create different accounts or identities for yourself. The
MetaMask drop-down box will be similar to the one in figure 12.2, but with
account details.

The MetaMask wallet shows that your account balance is 0. You need test
ether to transact on the Ropsten Ethereum test network. Let us start collecting
ether from a cryptocurrency faucet meant for this purpose.

Figure 12.2 Restore account using seed phrase in MetaMask wallet

296 CHAPTER 12 Blockchain: The road ahead

12 Copy your account address, as shown in MetaMask. You need this address to col-
lect test ether for your account.

13 Open a Ropsten faucet (https://faucet.ropsten.be) to receive 1.0 test ether.
14 In the box that appears, enter your testnet account address from step 10, and

click the Send Me Test Ether button. You’ll have to connect the account to the
Ropsten faucet using the connect option on MetaMask account.

You should see a 1.0 ETH balance added to your account. You can view this
balance in the MetaMask wallet.

You can collect 1.0 ETH every 24 hours. Keep collecting ether to support the
explorations of the various Dapps you may create.

The mnemonic you generated earlier in this section defines a unique set of accounts
for your wallet. You can access these accounts from anywhere with the MetaMask-
enabled browser and the mnemonic. The solution discussed in this section is for a sin-
gle user self-generating the identity.

 The account addresses generated can be used as identities on any Ethereum-based
blockchain networks. The challenge is to teach users that they must keep the key
phrases safe and secure, as they do with their Social Security numbers. Thus, manag-
ing identities is a crucial concept in production environments. To manage identities,
the Sovrin organization has defined a complete, self-sovereign identity framework that
provides an open identity management framework (http://mng.bz/QxWw) by using
digital credentials you own. Sovrin uses an issuer-verifier-owner model for managing
identity and trust.

12.3 Consensus and integrity
The consensus model is a hotly debated topic in blockchain technology. Participants
enabled by the self-assigned identity can send transactions, and these transactions are col-
lected into different blocks by the blockchain (miner) nodes, as shown in figure 12.3. One
of the many blocks formed will be appended to the chain. The challenge is to add a block
about which the stakeholders in the network agree. Let’s explore this aspect next.

 Consensus means agreement among peers. This consensus is an agreement among
the full nodes about the next block to be added to the chain, a process that ensures
the integrity of the chain. To address this issue, different consensus models—such as
proof of work (POW), proof of authority (POA), and proof of stake (POS)—have
been proposed and tried.

 Bitcoin uses proof of work (POW) for consensus. Figure 12.3 shows a high-level depic-
tion of POW consensus. The figure shows that miners compete (by solving a computation
puzzle) to add the next block to the chain. POW is computationally intensive and results
in enormous power consumption in the massive racks of specialized computers used in
solving the POW puzzle for the right to mine the next block. It is estimated that Bitcoin
mining consumes as much as energy as the country of Ireland uses per day. Therein lies
the problem. Let’s discuss the POW method and two alternatives to it.

http://mng.bz/QxWw
https://faucet.ropsten.be

297Consensus and integrity

12.3.1 Proof of work

The POW algorithm has been working in Bitcoin since its inception more than ten
years ago; Ethereum has used POW since its release. POW is the baseline for many
consensus algorithms that are being proposed, so it is good to review POW in this sec-
tion. POW works like this. Compute the hash H of block header elements (fixed) and
a nonce (variable):

1 H = hash(header, nonce) //nonce is variable parameter in the header

2 If H <= function(difficulty) for Ethereum, the miner has solved the

puzzle, jump to step 4. //difficulty is a variable parameter in the

header

3 Else change the nonce and repeat steps 1 and 2.

4 Puzzle has been solved.

Although it is difficult to find the combination (header, nonce) that solves the prob-
lem in step 2, it is easy to verify. How do you verify that a hash H <= 2128 assuming 2128

is the function(difficulty) in the steps? Check whether the leading (256-128= 128)
128 bits of H is zero. Note that all data and computations are in 256 bits. In the newer
version, Ethereum Istanbul, the plan is to use proof of stake (section 12.3.2).

12.3.2 Proof of stake

In proof of stake (POS), the full node with the most at stake or most coins in its
account chooses the next block to be added to the chain, which is why it is called
proof of stake. The idea is that the node with the most at stake will not act maliciously
and risk its stake by forking the network. A round-robin policy is used to avoid monop-
oly by the node with the most at stake. The transaction fees pay the minter (yes, minter,
not miner) fee, and there is no miner fee, such as in POW. The POS approach is
expected to be environment-friendly and efficient.

Rejected Txs

Txs are added to
network and
broadcast

Txs validated by miners
for double spending,
invalid addresses,
values and other

attributes
Valid Txs

Pool of
unconfirmed Txs

–mempool

Txs gathered and
candidate blocks
formed by miners

Miners compete to
solve a puzzle to

add a block: POW

Wining miner adds
block to the chain
and broadcasts

block

Others verify the block
and confirm Txs

Txs in the block
confirmed

POW: Proof of work
or alternatives

Figure 12.3 Block creation and transaction confirmation with POW consensus model

298 CHAPTER 12 Blockchain: The road ahead

12.3.3 Byzantine fault-tolerant consensus

Practical Byzantine Fault Tolerance (PBFT) has been proven to tolerate random or
Byzantine node failures (including malicious nodes). In PBFT, nodes elect a leader,
and that leader adds the next block to the chain. The nodes exchange messages. The
messages, along with the saved state, are used to reach a consensus in the presence of
random independent faults or bad nodes. The chosen node adds the next block of
validated transactions. PBFT is popular in permissioned blockchains such as Hyper-
ledger Fabric.

 As you can see, consensus is a core component of a blockchain protocol, and an
efficient algorithm is essential for both the integrity and scalability of blockchain. Scal-
ability is the next challenge I’ll discuss.

12.4 Scalability
Scalability is a bottleneck preventing the broader adoption of blockchain for busi-
ness applications. The question many businesses ask is whether blockchain protocol,
infrastructure, network, and nodes can successfully deliver a transaction rate on par
with that of credit card transactions. Average transaction confirmation time depends
on the average block time—the time required to confirm a block. As shown in fig-
ure 12.3, transactions are packed in a block, and the block is appended to the chain.
All the transactions in a confirmed block have the timestamp of the block. You must
be aware of this fact when using transaction confirmation times for verification in
your application.

DEFINITION Scalability is the ability of a system to perform satisfactorily at all
practical levels of load. Load, in the context of the blockchain, could be trans-
action times, transaction rate, number of nodes, number of participants and
accounts, number of transactions, or other attributes.

In the case of blockchain, practitioners are concerned about the transaction rate, or
transactions per second. This metric is critical for many applications, from payment
systems to supply chain management, so let’s focus on transactions per second as the
metric for scalability.

 Blockchain has taken on the responsibilities of the intermediaries, including vali-
dation, verification, and recording of the transaction. The consensus process for the
integrity of the chain is another time-consuming function. All these functions take
time and result in significant overhead in Tx confirmation time compared with that of
a centralized system. The transactions execute sequentially. The full nodes store the
entire chain. Thus, transaction rates are not satisfactory compared with those of cen-
tralized applications, which affects scalability. In this section, let’s examine some solu-
tions that address scalability.

 Figure 12.4 shows average transaction time from etherscan.io from January 2016 to
July 2020, the average block time, ranging from 12 seconds in 2020 to a maximum 30
seconds in 2017. A credit card transaction can be confirmed in less than a second,

299Scalability solutions

whereas it takes an average of 10 seconds for Ethereum. It is expected that in the latest
version of Ethereum, transactions per second will improve to 3,000. But the Visa
credit card network is capable of handling a load of 65,000 transactions per second.
Thus, scalability is an area that requires a lot of attention, and this is an opportunity
for you to contribute creative solutions.

12.5 Scalability solutions
Many solutions have been proposed, and quite a few of them have been in operation
in production networks. The Ethereum community is working hard to address the
scalability issues. The proposed solutions are across all levels of the stack.

12.5.1 Side channel

Side channel is a solution at the blockchain application level. The state channel of
Ethereum and the lightning channel of Bitcoin are examples. The idea is to keep only
relevant transactions on-chain for confirmation and recording. Other transactions
between trusted parties are offloaded to a side channel, thus reducing the transaction
load on the main channel. Periodically, the gist of the off-chain happenings are syn-
chronized with a transaction on the main channel. The transactions of off-chain chan-
nels take place at much higher speeds than on the blockchain networks because no
consensus or recording on the blockchain distributed ledger is required.

 Recall that you used a side channel in the MPC-Dapp in chapter 7. This Dapp
addresses scalability to a certain extent at the application level. At this point, you have
the knowledge and skill to apply the side channel concept when developing Dapps, as

Figure 12.4 Ethereum average block time chart

300 CHAPTER 12 Blockchain: The road ahead

demonstrated in MPC-Dapp. Try using the side channel model where it is relevant in
your Dapp development.

12.5.2 Block size

Increasing block size is a protocol-level solution. Transaction time depends on block
time. So why not increase the size of the block to accommodate more transactions,
thus increasing the number of transactions per block? The idea is to double the block
size and store the block header data segregated (Segwit2X) to accommodate more
transactions in a block.

12.5.3 Network speed

Improving network speed is a network-level solution. Researchers believe that scalabil-
ity is a network-level problem, and increasing the bandwidth at the level that of the
internet will help. The idea is that higher network speed may lead to a faster relay of
transactions and block, leading to faster consensus and block selection. There are
many opportunities for you to contribute to existing or new scalability solutions at the
network and protocol levels.

12.6 Privacy
When I introduce blockchain to any audience, the most frequently asked question is
about privacy. A public blockchain is an open network that anybody can join and
leave, so how do you keep it private? I often reply with another question: How do you
keep something private in real life? By not allowing others to see it.

 The first-line solution for addressing privacy is restricting and controlling who is
allowed to join and transact on the blockchain. That’s been the solution for blockchain
too. Consider a democratic voting system on the blockchain. There is no need for the
country’s voting blockchain network to be open to the entire world; you want this net-
work to be private to the legal or permitted citizens of that country. Hence, we have per-
missioned blockchain, which leads to the first line of defense supporting privacy, the
three major models for blockchain networks: public, private, and permissioned.

12.7 Public, private, and permissioned networks
Bitcoin (also called the permissionless blockchain) is a working example of a public
blockchain. The primary purpose of the Bitcoin blockchain is to support a decentralized,
peer-to-peer payment system. It’s meant to be a transparent, permissionless public system
that anyone can join and leave as they wish, as in any other bearer payment system, such
as transacting cash. If you pay cash for an item you purchase in a store, for example,
nobody asks you for your signature or needs you to authorize the payment. Similarly,
Bitcoin enables a peer-to-peer digital payment system without any intermediaries.

 When the use cases for blockchain expanded beyond the simple payment system
into business areas such as personal health care systems and financial systems, privacy
and restricted access became necessary. Even in the public payment systems, it became

301Public, private, and permissioned networks

apparent that the whole chain may not be relevant to all the participants. Business
transactions in a Buffalo school district may not be relevant to the Nairobi tourism
board, for example. Such thoughts and ideas resulted in the creation of permissioned
blockchain (figure 12.5), in which only permitted participants can transact and take
part in the blockchain operations.

 The permissioned blockchain is also known as a consortium blockchain based on
its everyday use cases in specific vertical business domains, such as the auto or food
services consortiums. Chapters 2 and 6 introduced the ASK airline consortium, which
is a suitable Dapp for a permissioned blockchain. In the case of the micropayment
channel in chapter 7, a public chain is appropriate.

The third type, private, is an extreme case of permissioned network in which member-
ship is highly selective and often limited and permanent. Although experts claim that
a private blockchain is no different from a centralized system among known partici-
pants, it still has potential for useful applications. Sometimes, trust is a significant
issue even among known or related peers, such as members of a family, the board of
directors of a company, or a group of researchers working on sensitive matters of
national security. You could develop a private blockchain among a closed set of enti-
ties to record deliberations and decisions, to be used later for discovery and in some
cases for litigation. The significant issue with a smaller membership and consequently
with private blockchain is the 51 percent attack. In this case, it is potentially easier for
a few members to collude and make the chain inconsistent.

Join

Leave

Public blockchain
network

Need permission
to join and leave

Permissioned blockchain
netowork Private blockchain network

Anybody can
join and leave.

Fixed membership
closed group

Figure 12.5 Public, permissioned, and private blockchain networks

302 CHAPTER 12 Blockchain: The road ahead

 All three types of public blockchains—permissionless, permissioned, and private—
are relevant in the blockchain application domains. They differ mainly in the way
membership is determined. With closed membership, it is possible to implement a
more efficient consensus mechanism than the POW of Bitcoin, which consumes an
enormous amount of power. But in a closed, private system, you are reverting to trust-
ing a few designated participants, as in a centralized system. You must weigh these
facts when deciding which type of blockchain is appropriate for a given problem.
Whether the blockchain is public, private, or permissioned, you need security mecha-
nisms to protect the data.

12.8 Confidentiality
Many people equate privacy with confidentiality. Confidentiality is different from
privacy; it is about keeping details (or metainformation) about the transaction closed.
In some situations, transactions have to be confidential. Consider a patient–doctor
relationship. If there were ten transactions between a patient and healthcare provider
in a day, this information might convey something, even if the content of the
transactions is kept private. The fact that ten transactions occurred between the parties
implies something.

 Let’s explore how open the transactions are in the Ropsten network you used to
deploy your Dapps.

12.8.1 Open information

Whether it is a public chain or a private chain, you can search the blockchain ledger
with an account number to find all the transactions associated with this address, as
shown in figure 12.6. You can also search by transaction hash, block number, and
other filters. If you have an account number, you can try it for by yourself at the Ether-
scan for Ropsten site (https://ropsten.etherscan.io).

If I want to know all the transactions that originated from a certain identity, for exam-
ple, I can search for it by using its account address, as shown in figure 12.7. You realize
that you can secure all the data by using encryption, but the fact that the transaction
happened is not confidential. It shows the transaction from account 0x28… along
with other details. Even if the contents of transactions are encrypted, the transactions

Figure 12.6 Searching the blockchain records by a certain filter

https://ropsten.etherscan.io

303Security

themselves are not confidential. If this is my address, you know that I have been fre-
quently invoking a smart contract at the address 0x1e… This information conveys
some intelligence to you. If the smart contract were my stockbroker, you might infer
that I have been considering some financial moves. In other words, although my trans-
actions were secure, they were not confidential.

12.8.2 A solution

How do you achieve confidentiality in blockchain applications? To protect the confi-
dentiality of data, a novel concept called zero-knowledge-proof has been proposed.
Zcash (https://z.cash/technology) is a working solution for realizing confidentiality
in cryptocurrency transfers. It achieves confidentiality by implementing a novel type
of Txs called shielded transactions or z Txs. In this realm, unshielded Txs are referred
to as t Txs. Zcash is well-founded in a strong scientific background. It offers four types
of Txs:

 Both sender (z) and receiver (z) are shielded (fully private).
 Only sender (z) is shielded, not the receiver (t).
 Only receiver (z) is shielded, not the sender (t).
 Both receiver and sender are not shielded (public).

In this case, z refers to shielding or hiding, and t refers to a regular nonshielded
entity. Although this solution is available only for digital currency such as that offered
by Zcash, a similar solution can be adapted to other application domains, such as
health care, financial, and military.

12.9 Security
Security is a challenge for any computing system and network, especially in an open
and decentralized system of typically unknown participants. Over the years, security at
the network level (http:// to https://), infrastructure level (firewalls), system level

From address:
msg.sender

To address

Figure 12.7 Transactions from account 0x2812c… on Ropsten public chain

https://z.cash/technology

304 CHAPTER 12 Blockchain: The road ahead

(dual authentication passwords), and similar measures have improved the overall
security of networked systems. Typically, a blockchain-based application is part of such
a system. In addition, robust cryptographic algorithms and hashing algorithms have
helped secure blockchain at the protocol level and the application level. Here are
some of the approaches used:

 256-bit processors and computations for blockchain operations—The 256-bit address
space is four times exponentially larger than 64-bit space, and a larger address
space means that the probability of hashing collision is lower, thus preserving
the integrity and security of blockchain operation.

 The private-public key pair—The private-public key pair is the metaphorical pass-
port to participating and transacting on the blockchain. Similar to the way you
use, secure, and protect a credit card, you need to protect the private key and
the mnemonic representing it for the security of your assets.

 Elliptic curve cryptography (ECC)—At the protocol level, blockchain protocol uses
the ECC family of algorithms instead of the traditional RSA (Rivest-Shamir-
Edelman) algorithm. Why ECC, not RSA? ECC is stronger than RSA for a given
number of bits. A 256-bit ECC key-pair is equivalent in strength to about a 3072-
bit RSA key pair.

 Tx and block hashes—Tx hashes and block hashes are computed at the time of
their creation. Any modifications (even a single bit) to a Tx or a block will result
in a mismatched hash, resulting in rejection of the Tx and the block securing
the integrity of the chain.

 Off-chain data security—Application data off-chain can be secured by hashing the
data and storing only the hash value on the chain. This concept is discussed in
chapters 2–6, in which the airline data off-chain can be secured by a hash on
the chain.

 On-chain data security—At the application level, a combination of encryption,
hashing, and one-time-password helps secure the data transmitted in a Tx. You
used hashing and encryption with a one-time password to secure the bid in the
MPC-Dapp in chapters 7 and 8.

Thus, a combination of hashing and cryptography plays a critical role in the block-
chain creation process, as well as the integrity of transactions and the security of data.
A developer will routinely use cryptography and hashing algorithms in their develop-
ment. As you learned in chapter 9, the web3 API provides Keccak and SHA3 functions
to facilitate security in Dapps.

 Do you wonder about the role of cryptocurrency in a typical Dapp? Do you wonder
whether you can develop without the use of cryptocurrency and focus solely on busi-
ness logic on the blockchain? That’s what you’ll explore next.

305Securing it with cryptocurrency

12.10 Securing it with cryptocurrency
Another important consideration in blockchain applications is the cryptocurrency
aspect that is not prevalent in your regular network computations. The genesis of
blockchain is cryptocurrency transfers with the advent of Bitcoin. As you may have
realized through your explorations in this book, ETH cryptocurrency is required for
deploying a Dapp, transacting, and executing smart contract functions. The crypto-
currency, miner fees, transaction fees, gas points, and incentives all ensure proper
operation and enable trust. In other words, these expenses incurred are the cost of
trust. Blockchain platforms use cryptocurrency as well as protocol logic to implement
trust. This aspect leads to the classification of platforms based on their primary pur-
pose. Bitcoin, Ethereum, and Linux Foundation’s Hyperledger (figure 12.8) are three
different platforms based on their primary purpose. Many other platforms are avail-
able, and I urge you to explore appropriate ones for your application domain.

 Here are a few prominent platforms to consider for your applications:

 Bitcoin is meant for cryptocurrency transfer and does not support arbitrary
logic in such instruments as a smart contract. Bitcoin protocol does support a
minimal script for conditional transfer of cryptocurrency.

 The Ethereum mainnet is a public network, but Ethereum can be used for pri-
vate, public, and permissioned networks. Enterprise Ethereum Alliance (EEA)
was created to support the need for consortium or permissioned as well as pri-
vate Ethereum networks. Ethereum supports cryptocurrency as well as compu-
tational logic in smart contracts.

Figure 12.8 Types of blockchain, from pure cryptocurrency to pure logic

Smart contract

Type 1: Only cryptocurrency Type 2: Business logic
+ cryptocurrency

Type 3: Only business logic

Example: Bitcoin Example: Ethereum Example: Hyperledger framework

306 CHAPTER 12 Blockchain: The road ahead

 The Hyperledger framework focuses on computation logic and currently does
not support cryptocurrency. The Hyperledger framework has many implemen-
tations, including Iroha, Intel’s Sawtooth, Fabric, Indy, Burrow, and IBM’s Fab-
ric (version 2). Currently, these platforms are purely business-logic-based. No
cryptocurrency is involved.

Thus in figure 12.8, you can see the two ends of the spectrum of blockchains, from real
cryptocurrency enablers to pure business logic enablers. When you are designing
blockchain-based solutions, you must consider cryptocurrency to be an integral part.
Blockchain may not be only for sending and receiving value. You can create incentive
models involving participants, fees for various activities, creative solutions for planetary-
level problems (such as MPC discussed in chapter 7), and new economic models cen-
tered on a working digital currency. The cryptocurrency incurred is the cost of trust for
the decentralized blockchain-based application.

12.11 Accessing off-chain data (Oracles)
Have you wondered how a smart contract can access external data? A smart contract
operates in a sandbox. It cannot call an outside function or link to an external
resource. Why can’t a smart contract access outside sources? Depending on the source
called, external data access from a smart contract may affect the global consistency of
the blockchain. The results of any operation on the blockchain have to be determinis-
tic. These issues limit the applicability of smart contracts in many real-world applica-
tions that may involve obtaining facts, data, and assets from external real-world
sources. Moreover, data may have to be obtained at the time of execution and may not
be available at the time of deployment of the contract. Let’s look at some examples:

 Temperatures on Mount Kilimanjaro on a given day—The temperatures are univer-
sal facts, but they have to be obtained from an authentic external weather
source.

 Stock market data—This data may be the high and low prices of a stock on a par-
ticular date on the NASDAQ market. This condition ensures that all the partici-
pants on the chain get the same consistent outcome for a smart contract
operation.

How do you get access to external resources? Accessing data sources external to the
smart contract is addressed by a concept called oracles. An oracle service fetches exter-
nal data for a smart contract. Merriam-Webster defines oracle as “an authoritative or
wise expression or answer.” This definition closely defines the role of the oracle ser-
vice in smart-contract development.

DEFINITION An oracle service is a data carrier between web resources (APIs
and URLs) and a smart contract. An oracle service is located outside the
blockchain protocol.

307From foundations to practical systems

An oracle is a useful component that facilitates the availability of real-world facts
needed for the functioning of certain smart contracts. Provable (https://provable
.xyz/index.html) is an implementation of an oracle service for getting outside data
into a smart contract. Chainlink (https://chain.link/features) is a more recent oracle
service for smart contracts to access external data feeds, APIs, and payments.

 Oracle service is implemented as a smart contract that provides a query function to
access external sources. The oracle smart contract is imported into the calling smart
contract and inherited. Then a query is used to access the oracle with the required
data. The data requested is returned through a callback function because accessing
data and verification may take some time. Figure 12.9 shows a simple class diagram
relating a smart contract, oracle services, and an external data source.

When the smart contract AvgWinterTemperature is deployed, it calls fetchData(),
which in turn invokes the oracle service’s query with the URL for the data source. It
may take time to fetch the data, so a callback function is provided that can be invoked
when the required data has been fetched. The oracle service accesses the external
data source, authenticates the requested data, and sends it to the originating smart
contract. Additionally, the service may offer methods to verify the authenticity of the
data fetched.

12.12 From foundations to practical systems
Blockchain is based on nearly 40 years of scientific research in cryptography and math
algorithms. The butterfly effect is defined as a little perturbation of an initial state that
culminates in significant outcomes. This concept is defined in the context of chaos

«Smart Contract»
AvgWinterTemperature

unit temperature;
Event log;

averageWinterTemp();
fetchData();
callback();

«Smart Contract»
Oracle

oracleQuery(..)

Extends

«External Source»
WeatherData

getExternalData()

Callback()

Figure 12.9 Accessing external
data through oracle service

https://provable.xyz/index.html
https://provable.xyz/index.html
https://provable.xyz/index.html
https://provable.xyz/index.html
https://chain.link/features

308 CHAPTER 12 Blockchain: The road ahead

theory. The advent of Bitcoin has had a butterfly effect on technology. It has creatively
synthesized scientific research results from the past four decades to release an innova-
tive working model for a peer-peer digital payment system, as shown in figure 12.10. It
shows how foundational research in public-key cryptography and security has led to
the discovery of the internet and secure distributed systems. These discoveries, along
with hashing and cryptographic algorithms, enabled Bitcoin and the underlying foun-
dation of blockchain. All these concepts culminated in blockchain’s distributed led-
ger, disintermediation, smart contracts, decentralized apps, and planetary-level
inclusive systems.

 The smart contract concept in figure 12.10 is enabled by blockchain. A smart con-
tract represents a token. In other words, a smart contract can provide an elegant rep-
resentation of an asset in the physical world or digital world: a stock, a piece of real
estate (as discussed in chapter 9), or a digital game bounty. This tokenized asset can
be traded, discounted, divided, archived, and destroyed. The tokens (or their frac-
tions) can be used for incentivization, such as shopping coupons and participatory
remuneration. The entire history, since the creation of the asset, can be recorded in a
trusted distributed immutable ledger that can facilitate audits and authentication.
These features have the potential to spawn a new token economy.

 You can see from figure 12.10 that this single idea of blockchain is ushering in a
technological and a social revolution. You are witnessing the transformation from cen-
tralized to decentralized applications enabled by blockchain technology and crypto-
currencies. These emerging technologies are expected to culminate in new
applications that transcend demographics and national barriers. As explained in this

Figure 12.10 The blockchain butterfly: foundations to contributions

309Looking ahead

chapter, this area is in flux, and a lot more needs to be done. Transforming this strong
foundational knowledge into practical and useful Dapps will require reimagining tra-
ditional applications to include the trust component. You can play an important role
as a participant, collaborator, and contributor to this revolution.

12.13 Looking ahead
At the global level, organizations such as the United Nations have an opportunity to
serve as a test bed for many blockchain applications, such as verifiable disaster relief,
vaccine distribution, maintaining international peace through trust, and enforcing
democratic processes. Chapters 7 and 8 demonstrate a massive global plastics cleanup
problem.

 Within any country, government officials and policymakers can take up policies
and regulations to ease the adoption of blockchain. U.S. states such as New York and
Delaware are considering regulations that will help in the widespread adoption of
blockchain solutions. Unlike with other traditional technologies, the government can
host a full node or nodes to facilitate decentralized operations. This feature offers the
additional benefit of full nodes storing a completed timestamped ledger of Txs. The
information on the ledger can be used for audit and review purposes. The Depart-
ment of Education, for example, may play a vital leadership role in the adoption of
blockchain for educational purposes such as countrywide credentialing. (Chapter 11
discusses the credentialing prototype DCC-Dapp.)

 At the application level, autonomous vehicles and robots on shop floors and in
home care have become a reality. Augmenting these innovations with blockchain can
develop a layer of trust for monitoring autonomous actions. Enabling a cryptocurrency
capability for these autonomous entities, you can design self-paying and self-managing
machines. You can send cryptocurrency to pay these machines for their services in
cryptocurrency, and they can use their cryptobalances to self-schedule repairs, replen-
ishments, and payments.

 Have you wondered about the data that gets stored on the distributed immutable
ledger of blockchain? This timestamped data is indeed a valuable resource for post-
analysis to discover patterns, actionable intelligence, and anomalies.

 More developers and practitioners are wanted to focus on many of the challenges
discussed in this chapter. More tools, frameworks, and test beds are needed for rapid
prototyping and testing. Educating stakeholders at all levels and training users and
developers in the proper use of blockchain technology is an important step. Thinkers
and designers who are knowledgeable about blockchain are needed to use blockchain
to solve problems creatively.

310 CHAPTER 12 Blockchain: The road ahead

12.14 Best practices
Here are some best practices for what you learned in this chapter:

 Choose the type of blockchain based on the membership requirements of the
application: private, public (permissionless), or permissioned (consortium).

 Determine the blockchain platform for your environment, depending on
whether you need cryptocurrency.

 Carefully review the problem; it may not require blockchain involvement.
 To support Dapp development, choose the language for the smart contract,

frameworks for the frontend, tools such as Remix and Truffle, test bed
(Ganache), cloud support (Infura), and test plans.

 Design before you develop. Use a test-driven development approach (as dis-
cussed in chapters 4, 6, and 10).

 Make sure to pay attention to the best practices discussed throughout this book
for developing Dapps.

12.15 Retrospective
Blockchain is here to stay. Bitcoin is an excellent example of what has been running
autonomously and supported by a developer community. Blockchain, such as Ethe-
reum discussed in this book, has added execution logic to make it viable for solving
business problems. Blockchain is not without its share of challenges, as it is evolving
and growing its ecosystem.This book covered quite a range of decentralized applica-
tions and supporting concepts. The seven worked-out examples are

 A versatile counter (Counter-Dapp)
 A digital democracy (Ballot-Dapp)
 A marketplace for unused airline seats (ASK-Dapp)
 A blind auction framework (BlindAuction-Dapp)
 An incentivization model and side channel for micropayments (MPC-Dapp)
 A token model for real estate transactions (RES4-Dapp)
 An educational credentialing model (DCC-Dapp)

These Dapps provide application models with instructions to support your learning
and development efforts. The book also covered relevant concepts that support the
development of these Dapps, including

 Trust and integrity
 Security and privacy
 Off-chain and on-chain data
 Local and public deployment
 Automated testing

All the concepts are supported by code to illustrate their application in the develop-
ment process. I hope you find them useful for understanding and developing with
blockchain technology.

311Summary

12.16 Summary
 Decentralized identity, consensus, and cryptocurrency are unique issues related

to blockchain that you do not find in traditional networked systems.
 Scalability is a major challenge in blockchain networks. Innovative solutions are

needed to address scalability and to encourage broader adoption of block-
chain.

 Privacy, confidentiality, and security are critical in systems supported by block-
chain because no central authority polices or manages them.

 Blockchain has a deep, strong foundation in nearly four decades of mathemati-
cal and scientific research.

 Blockchain provides a trust layer to enable autonomous applications. These
applications will usher in a new wave of innovations that is sure to lead us to
another revolution in internet technology.

313

appendix A
UML blockchain

 design models

Software application development should always begin with a clear problem state-
ment that describes a problem to be solved, including its requirements, scope, lim-
itations, exceptions, and expected outcomes. You analyze this problem statement
to come up with a design representation. The design representation of an applica-
tion is like the blueprint that is created before the construction of a home or the
engineering design created before a product is machined.

 Software application developers are often eager to jump into coding before they
design, but this is not good practice. The best practice is to analyze and design the
solution to a problem in a standard format so that all the parameters can be discussed
with the stakeholders in an implementation-independent fashion, using visual
representations of the design components. Unified Modeling Language (UML)
(https://www.uml.org) offers multiple diagram models for design representation.

 The UML design methodology was introduced about three decades ago to address
the development challenges that arose as the scale and complexity of software
increased, with small-scale systems being replaced by large, multimodule systems. UML
modeling has been widely adopted by many organizations, and UML diagrams have
become a standard for visual models for designing software. The UML models and doc-
umentation are maintained by the not-for-profit Object Management Group (OMG).
The latest version, UML 2.0, has 13 types of diagrams categorized in 3 groups: struc-
tural, behavioral, and interaction diagrams. There is a good chance that you are cur-
rently using one or more of these diagrams in your environment. This appendix reviews
a selected set of UML diagrams that are used in the design of decentralized blockchain
applications in this book. Many UML tools, free and paid, are available for drawing
UML diagrams. One of the freeware options, draw.io (https://app.diagrams.net/),
was used to develop the designs for the applications in this book.

https://www.uml.org

314 APPENDIX A UML blockchain design models

A.1 Problem analysis and design
Would you ever launch into building a house without a blueprint? No way! Not only
do you need a plan, but you also need a plan in a standard format that can be
reviewed, understood, and approved by the authorizing agency. Similarly, UML dia-
grams are a set of diagrams that help you visually represent the design of your solution
to a problem so that stakeholders can understand, discuss, and approve it before you
start developing and coding the solution.

 Let’s take a look at the behavioral, structural, and interaction diagrams that are
put to use in this book for designing decentralized applications.

A.2 Behavioral diagrams
In this book, we employ two UML behavioral diagrams: use case diagrams for require-
ment gathering as one of the first steps in the design process, and finite state machine
(FSM) diagrams later in the design process for defining state transitions of the execut-
able code (smart contracts) on the blockchain.

A.2.1 Use case diagrams
Use case models help you analyze a problem statement, identify the actors or users of
the system defined by the problem, and determine how these actors will use the sys-
tem. The actors need not be only humans; they can be humans, applications, and
devices, for example. The actors are anything or anyone that provides the stimulus for
activation of one of the use cases identified by the problem statement. The use case
diagram, therefore, defines three items, as shown in figure A.1:

 The actors of the system
 The use cases of the system
 The stimuli provided by the actors

An actor is someone or something that interacts with the system you are designing. A
use case provides some value to the actor. Let’s analyze a problem and design the use
case diagram for it to clarify this process.

PROBLEM STATEMENT Design a vending machine: a customer inserts coins
and chooses a drink that is delivered. For simplicity, consider only the case
with no exceptions and with the exact amount of coins required deposited.

The use case diagram for the vending machine coin counter and drink dispenser is
shown in figure A.2. It has four use cases at the first level—insert coins, see drinks,

Actor
Use case

Stimulus

Figure A.1 Actor, use case, and stimulus

315APPENDIX A UML blockchain design models

select drink, and pick up drink—which are direct stimuli or operations invoked by the
customer. The insert coins operation in turn invokes the count coins use case, see
drinks requires display drinks, and select drink results in deliver drink. These second-
ary use cases are not directly invoked or used by the customer. An important note is
that a use case diagram is not like a traditional flow chart. It simply lists the operations
in the elliptical use case symbols. The operational flow is not defined here.

Try using draw.io, Microsoft Visio, or another tool of your choice to create the use case
diagram and get some practice.

A.2.2 Finite state machine diagrams
FSM diagrams define the states that define the operational flow on execution of code
and the transitions among them, a classic type of diagram from the theoretical foun-
dations of mathematics and computer science. In the context of blockchain, an FSM
diagram is used to define the states and state transitions when a smart contract exe-
cutes; it’s a convenient tool for expressing the behavior of a smart contract.

Customer

insert coins

see drinks

select drink

pick up drink

count coins

display drinks

Use

Use

deliver drink

Use

Figure A.2 Use case diagram for vending machine

316 APPENDIX A UML blockchain design models

DEFINITION A finite state machine is made up of a set of states (an initial state
and one or more terminal states), transitions from one state to another, and
the events that bring about those transitions.

Let’s explore the elements of the FSMm using an example problem and its finite state
machine representation. We’ll use the count coins use case from the vending machine
use case diagram in section A.2.1 and design its logic in the form of an FSM. For sim-
plicity, let’s assume that the vending machine counts up to 25 cents and takes 5- and 10-
cent coins as the only inputs. The FSM for counting to 25 cents is shown in figure A.3.

The starting state is S0, and the ending state of the FSM design diagram is S25. That is,
beginning at the value 0, using 5C and 10C coins, you would like to reach the S25
state. The states possible are S5, S10, S15, and S20. You can see the transitions brought
about by the customer inserting 5C and 10C coins, ending up with S25. The FSM in
figure A.3 exhaustively enumerates all the logical possibilities. Assume that the cus-
tomer is aware of the requirement to insert exact change.

 You can draw this diagram with any tool of your choice. The version here was cre-
ated with the widgets provided by the draw.io tool; draw.io does not explicitly provide
an FSM diagram, but you can use the circles and arrows from the general template.

A.3 Structural diagrams
This category of UML diagrams helps you define the static structural design of your
solution. We will study only one of them: the class diagram. You will learn to represent
multiple classes and their relationships, using standard notations. Class diagrams are
useful for defining the overall structure of a module or a smart contract solution.

Start
S0

End
S25

S5

S10 S20

5C

10C

5C
S15

10C

10C

10C

5C5C

5C

Figure A.3 FSM for counting exact change (25 cents)

317APPENDIX A UML blockchain design models

A.3.1 Class diagrams
The class diagram was introduced to represent a class in an object-oriented design of a
solution, but it can be used to represent any class of object in a problem. You discover
classes in your problem statement by underlining the nouns in the statement and
making a list of these nouns. Then you examine the complexity of the nouns to
decide whether a noun or object is complex enough to be a class or should be a struc-
ture within a class or a simple scalar variable.

 A class diagram has three compartments, as shown in
the template in figure A.4: the name of the class, the data
area with a field and type for each data item, and the func-
tions area. This template is from the draw.io tool, but you
can create a class diagram using any UML tool or drawing
package you are familiar with.

 Let’s define a simple class diagram, using the automo-
bile as an example.

PROBLEM STATEMENT Design a class diagram representing a generic
automobile.

Choose a simple name, Auto, for the class and then design the other parts of the class
diagram. A rule of thumb for discovering data items is to ask and answer these ques-
tions: “What are the characteristics of this class of object? What data defines an auto-
mobile?” Imagine yourself in an auto dealership, and try to enumerate all the
characteristics you desire in the automobile you want to buy. There can be many, but
for this example, choose color, miles per gallon, and year of manufacture. You can see
these characteristics in the first compartment of figure A.5.

 Next, add the functions. The question to ask this time
is “What are the behaviors of this class of objects?” Once
again, you can imagine many answers to this question, and
they may vary depending on whether you are a simple
user of the automobile or a mechanic who repairs it, who
may know about fuel injection and other inner details.
The simple functions of the automobile are enumerated
in the second compartment in figure A.5; again, these are
a few representative examples.

 The data fields of the class can be obtained by answer-
ing this question: What are the properties of the objects of
this class? The functions can be obtained by answering this
question: What can the objects of this class do?

 Next, we’ll look at associating many types of objects in
relationships.

Classname

+ field: type

+ method(type): type

Figure A.4 Class diagram
template

Auto

color autoColor;

make autoMake;

float mpg;

accelerate()

brake()

startEngine()

Figure A.5 Class diagram
for an automobile

318 APPENDIX A UML blockchain design models

A.3.2 Classes and relationships
A problem design can be defined by different types of classes in relationships such as

 Inheritance (generalization/specialization)
 Composition
 Association

Other relationships are possible, but these will be useful in the context of smart con-
tracts and blockchain-based decentralized applications.

INHERITANCE

Generalization and specialization of classes, known as inheritance hierarchy, is used for
representing a hierarchical structure of classes, as shown in figure A.6. Continuing
with the automobile example, we can specialize the basic design by using various char-
acteristics and behaviors. In this case, you can see the specialization of the Auto class
into Sedan, Truck, and Van classes. Here, only one item has been added to the data
field of each class (parameters for the number of doors, presence of a cargo bed, and
number of passengers), but you may be able to think of other features that specialize
these classes. The relationships are clearly indicated. These classes extend the basic
Auto design, as shown by the Extends arrows in the diagram. (An unfilled triangle
shape is used for the arrowhead in this kind of relationship.) Sedan, Truck, and Van
are said to have the same characteristics as the base class Auto and to inherit them
from the Auto class, but they also have special features that qualify them to have their
own class definitions.

COMPOSITION

Composition or aggregation relationships are used when a class is composed of one or
more other classes of objects. Using the same example, an Auto is composed of many
other classes of objects or aggregations of objects, as shown in figure A.7. (The solid

Auto

color autoColor;

make autoMake;

float mpg;

accelerate()

brake()

startEngine()

Sedan

numDoors = 4;

+ method(type): type

Truck

cargoBed

+ method(type): type

ExtendsExtends

Van

numPassenger =8

+ method(type): type

Extends

Figure A.6 Auto
hierarchy class
diagram

319APPENDIX A UML blockchain design models

diamond shape at the head of the arrow indicates this type of relationship). These
classes include FuelInjection, CruiseControl, and AntiLockBrakes. Note that I
haven’t filled in any fields or functions in the class definitions because I’m not an
expert in this domain. If your team doesn’t contain a domain expert, it will need to
collaborate with one to fill in these kinds of details.

ASSOCIATION

An association relationship among classes is used when a class needs to use the func-
tions of another class. Consider the example of a Teacher class and a GradingSheet
class, as shown in figure A.8. The association between these two classes is that a
Teacher uses a GradingSheet. This relationship is not inheritance because a Grading-
Sheet is not a type of Teacher, and obviously, a Teacher cannot be composed of Grad-
ingSheets. So the relation is association. In this case the association is uses, as
indicated in the diagram in figure A.8. Also observe the one-to-many designation
(1..n) on the arrow connecting the two classes, indicating that a Teacher may have
many GradingSheets.

Auto

color autoColor;

make autoMake;

float mpg;

accelerate()

brake()

startEngine()

FuelInjection

+ field: type

+ method(type): type

CruiseControl

+ field: type

+ method(type): type

AntiLockBrakes

+ field: type

+ method(type): type

Figure A.7
Automobile
composition
class diagram

Teacher

+ field: type

+ method(type): type

GradingSheet

+ field: type

+ method(type): type

uses

1

n
Figure A.8
Teacher–GradingSheet
association diagram

320 APPENDIX A UML blockchain design models

A.4 Interaction diagrams
In this category, you will learn about the sequence diagram as a means for designing
and analyzing interactions among various software components of a blockchain appli-
cation. The sequence diagram adds temporal elements to the design, which means
that it lets you specify the time and the order in which functions are invoked. The ver-
tical line in the diagram indicates timeline/progress. In figure A.9, you see the inter-
action between a weather station and a data source in the field to compute the
average temperature. The two classes shown are WeatherStation and WeatherSource.
The sequence diagram shows the interaction and the timeline. This type of diagram is
useful for explaining the sequence of operations with reference to time when a smart
contract is used.

WeatherStation WeatherSource

fetchData

return

Time

computeAverage
self-call

Figure A.9 Weather
sequence diagram

321

appendix B
Design principles

DESIGN PRINCIPLE 1 Design before you code, develop, and deploy a smart contract
on a test chain, and thoroughly test it before you deploy on a production block-
chain, because when the smart contract is deployed, it is immutable. (Chapter 2)

DESIGN PRINCIPLE 2 Define the users of and use cases for the system. Users are
entities that generate the actions and the input and receive the output from the sys-
tem you’ll be designing. (Chapter 2)

DESIGN PRINCIPLE 3 Define the data assets, peer participants, and their roles, rules
to be enforced, and transactions to be recorded for the system you’ll be designing.
(Chapter 2)

DESIGN PRINCIPLE 4 Define a contract diagram that specifies the name, data assets,
functions, and rules for execution of functions and access to the data. (Chapter 2)

DESIGN PRINCIPLE 5 Use a finite state machine UML diagram to represent system
dynamics such as state transitions within a smart contract. (Chapter 3)

DESIGN PRINCIPLE 6 Implement the verification and validation needed for trust
intermediation by using modifiers specifying the rules and conditions in a smart
contract. Typically, verification covers general rules about participants, and valida-
tion covers conditions for checking application-specific data. (Chapter 3)

DESIGN PRINCIPLE 7 Ensure the privacy and security of function parameters by
secure-hashing the parameters along with a single-use secret password. (Chapter 5)

DESIGN PRINCIPLE 8 Design smart contracts with only the functions and data
needed for enforcing rules, compliance, regulation, provenance, logs for real-time
notifications, and timestamped footprints and messages about offline operations.
(Chapter 6)

322 APPENDIX B Design principles

DESIGN PRINCIPLE 9 Use a UML sequence diagram to represent the sequence(s) in
which functions within a smart contract may (and can) be called. The sequence dia-
gram captures the dynamic operations of a system. (Chapter 6)

DESIGN PRINCIPLE 10 An important design decision in blockchain applications is to
determine which data and operations are to be coded on-chain and which data and
operations are to be implemented off-chain. (Chapter 7)

323

index

Numerics

2_deploy_contracts.js file 90–91

A

ABI (application binary
interface) 89, 205, 288

abi.encodePacked()
function 118, 122

access modifiers 65
accounts, defined 9
AccountsDemo.sol smart

contract 37
actors 314
actual data values 133
addAsset() function 234
addCoreCourse() function

275, 285
address attribute 36
address data type 45, 251
advancePhase() function

136–138, 140, 215
application binary interface

(ABI) 89, 205, 288
application-level

programming 7
appreciate() function 234
approve() function 234
ASK-app module 154
ASK-contract 154
ASKRequest() function

149–150, 152, 155,
159–160

ASKResponse() function
149–150, 152, 155,
159–160

assert statements 263
assert.isAbove() function 263
assert.isBelow() function 263
assert() function 55, 59, 76, 253
assert(condition) function 65
asset id parameter 239
assets 272
async() function 253, 255
auction-app module 138
auction-contract module 138
auctionEnd() function 122,

125, 144
AuctionEnded event 134–135,

143
await() function 253

B

balance attribute 36
balanceDetails() function 50
balanceOf() function 236
Ballot contract 90
beforeEach primitive 250
beforeEach() function 252, 254,

257–259,
262–263

beneficiary participant 212
bid() function 122, 125–126, 143
bidder1 participant 212
bidder2 participant 212

Bidding phase 119, 121, 125,
127, 134–135, 137, 141–143,
212, 214, 264

BiddingStarted event 134–135,
137, 144

BIP39 (Bitcoin Improvement
Protocol 39)
111, 199

blindedBid 120, 143
block hashes 304
blockchain client node

module 164
blockchain simulator, Remix

IDE 33
brew install node command 83
build() function 234
buy() function 74

C

cd ASK-app command 156
cd ASK-contract command 156
cd ballot-app command 92
cd ballot-contract command

87, 89
cd Ballot-Dapp command 87
cd Beneficiary/auction-app

command 210
cd Beneficiary/auction-contract

command 208
cd blindauction-contract

command 140
cd contracts command 89
cd DCC-contract

command 280–281

INDEX324

cd MPC-app command 183
cd MPC-contract command 183
CDC (Centers for Disease

Control) 19
chairperson 42, 58
changeState() function 63–64,

69, 122, 125, 136
checkEligibility() function 279
checkStudent modifier 275
CK (Cryptokitties) 232
claimPayment() function

175–177, 181
collision-free 116
compile command 89
composite test primitive 257
constructor() function 29, 48,

69, 152
constructPaymentMessage()

function 180
contract keyword 30
core package 165
Counter smart contract 34–35,

111, 113
course parameter 275
Cryptokitties (CK) 232
curve cryptography), ECC

(Elliptic 304

D

DAO (Decentralized Autono-
mous Organization) 52

<Dapp>-app module 130, 153
<Dapp>-contract module

130, 153
DCC (data-intensive computing

certificate) 270
DCC-Dapp (Data-intensive

Computing Certificate
Dapp) 271, 273

decrement() function 27–28, 31
depreciate() function 234
describe() function 250, 253,

257–259, 262–263
dir command 88
disintermediation protocol 8
Done phase 119, 125, 134, 140,

143, 264

E

ecrecover() function 175
editor space, Remix IDE 33

EEA (Enterprise Ethereum
Alliance) 305

EIP (Ethereum Improvement
Proposal) 228

endpoint address 203
enum (enumerated data

type) 60
EOAs (externally owned

accounts) 36–37, 109
ERC (Ethereum request for

comments) 229
ERC721 functions 237
ETH (test ether) 91
eth package 165
EVM (Ethereum VM) 15
exclusive OR (XOR)

function 116
express module 92–93
externally owned accounts

(EOAs) 36–37, 109

F

Failure on 255–256, 265
FERPA (Family Educational

Rights and
Privacy Act) 106, 270

fetchData() function 307
file explorer, Remix IDE 33
from address parameter 239
FT (fungible token)

228, 231, 246
function keyword 31

G

ganache-cli options 182
genesis block 13
get() function 27–29, 31
getChairperson() function 100
Geth (Go-language-based

Ethereum node) 196
GPA (grade-point average) 270

H

handlePhase() function 144
handleWinner() function 144
hash function 116
helper_contracts directory

236–237
highestBid parameter 144

HIPAA (Health Insurance
Portability and
Accountability Act) 18, 106

HTTP (Hypertext Transfer
Protocol) 16

I

IDE (integrated development
environment) 23

IETF (Internet Engineering
Task Force) 16, 228

if statement 66, 122
implicit attributes 36
implied attributes 36
increment() function 27–28, 31
independent test 252
Init phase 70, 119, 134,

137–138, 141
initialize() function 27–28, 31
integration testing 250
ISO (International Organization

for Standardization) 228
isValidSignature() function 175
it primitive 250
it() function 252, 255, 257–259,

262–263
itemAvail modifier 74

J

JavaScript (JS) 251

K

Keccak function 118

L

localhost 90
Login function 283
loginStudent() function 279
ls command 88
LTS (long-term support) 83

M

mapping data structure 60
mapping data type 46
memory type 77
MetaMask plugin 141, 156
migrate command 204
miner.stop() function 190

INDEX 325

mining 190
minter fee 297
mkdir ballot-app command 87
mkdir ballot-contract

command 87
mkdir Ballot-Dapp command 87
mnemonics 85, 204
modifier data type 46
modifier keyword 66
modifiers 43–44, 65
MPC (micropayment channel)

use case
public deployment

setting up environment 215
setting up MPC

environment 217
MPC-app module 177
msg.sender attribute 36, 272
msg.value attribute 36

N

net package 165
NFT (non-fungible token)

228, 246
node –v command 83
nodes, defined 9
npm (Node Package

Manager) 81, 138
npm commands 205, 208
npm init command 92–93
npm install -g truffle

command 83
npm install command 93–94,

140, 156, 183, 208, 210, 218,
221, 255, 258, 263, 281, 288

npm install –g truffle@nodeLTS
command 83

npm start command 94, 140,
156, 183, 210,
221, 288

npm uninstall -g truffle
command 83

npm –v command 83

O

OMG (Object Management
Group) 313

on-chain data security 304
onlyBeneficiary modifier 121
onlyChair modifier 73–75
onlyMember modifier 159
OTP (one-time password) 142

output console, Remix IDE 33
ownerOf() function 236

P

payment channel 166–167
per-block data structures 132
Phase reqPhase parameter 67
Phase.Done 61, 72
Phase.Init 61
Phase.Regs 66, 70
Phase.Vote 71, 73
POA (proof of authority) 296
populateAddress()

function 100, 189
POS (proof of stake) 296
POW (proof of work) 296
pragma command 30, 86
prefixed() function 175
private-public key pair 304
<project>-app module 81
<project>-contract module 81
proof of authority (POA) 296
proof of work (POW) 296
protocol-level programming 7
providers package 165
public deployment

MPC use case
setting up environment 215
setting up MPC

environment 217

R

recoverSigner() function 175
regID (request identifier) 155
register() function 43, 49, 66,

69, 71–72, 74, 100, 152, 155,
157, 283

Remix JavaScript VM 101
replenish() function 157, 159
replenishEscrow()

function 152, 155
reqID (request identifier)

157, 160
reqPhase parameter 65
Request for Comments

(RFC) 16, 228
request() function 49–50
requests for proposals

(RFPs) 127
require statement 65, 234, 265
require() function 55, 59, 65,

75–76

requires node modules 289
reqWinner() function 59, 69,

72, 74, 100
reset option 91
response() function 49–50
restricted sandbox

environment 30
return statement 31
Reveal phase 119, 121–122, 125,

127, 134–135, 141–143, 212,
215, 264

reveal() function 122, 125, 143
RevealStarted event 134–135,

137, 144
revert() function 59, 65, 75, 278
RFC (Request for

Comments) 16, 228
RFPs (requests for

proposals) 127
RIPEMD160 function 110, 118
ropsten-infura endpoint 287
Ropsten-Infura Ethereum

node 204

S

safeTransferFrom()
function 235–236

SEC (Securities and Exchange
Commission) 229

selfdestruct() function 192
selfdestruct(sender)

function 177
settlePayment() function 49, 51,

152, 155, 160
Sha (secure hash) 180
SHA256 function 118
shh package 165
side channels 167
sign() function 180
signMessage() function 180
smart contract address 205
smart contract–level

programming 7
smart contracts, defined 7
SoliditySha3 function 180
splitSignature() function 175
standard directory structure 101
standard naming

convention 101
stateChange() function 71–72
storage variable values 130
struct construct 60
struct data type 45, 134
Success on phrase 255–256, 265

INDEX326

sudo apt-get install nodejs npm
command 83

symmetric key encryption 107
system-level test-driven

development 250

T

test ether (ETH) 91
toNumber() function 145
toolchain, Remix IDE 33
totalSupply() function 236
transactions, defined 4
transfer() function 234
transferFrom() function 236
truffle compile command

81, 89, 101, 159
truffle console command 81
truffle develop command 81
truffle init command

81, 87–88, 255
truffle migrate --network

Ropsten command
209, 218, 287

truffle migrate --reset
command 91, 101, 140,
156, 183, 280

truffle migrate command
81, 91, 101, 159, 183,
205, 219, 222

truffle test command 81, 255,
258, 263, 281

truffle version command 83
truffle-config.js file 88
truffleAssert() function 253
trust enabler 8
Tx hashes 304
Tx(sendValue) 24

U

uint type 31
UML (Unified Modeling

Language) 26
unit testing 250
unregister() function 50, 152,

155, 157, 159
user interaction panel, Remix

IDE 34
utils package 165

V

validation 56, 65
validPhase modifier 66–67,

72–74, 121
validStudent modifier 275, 278
value integer 29
verification 56, 65

VM (virtual machine) 11, 24
vote() function 69, 72–73,

98, 100
VVRequest (verified and

validated request) 40

W

web3 provider 164
web3.core package 165
web3.eth package 165, 189
web3.eth.debug 190
web3.eth.miner 190
web3.eth.personal 190
web3.eth.personal.newAc-

count() function 190
web3.net package 165
web3.personal package 180
web3.personal.sign()

function 190
web3.providers package 165
web3.shh package 165
web3.utils package 165, 189, 192
winner parameter 144
withdraw() function 125, 262

X

XOR (exclusive OR)
function 116

Bina Ramamurthy

ISBN: 978-1-61729-633-8

B
lockchain is more than just the tech behind Bitcoin—
much more! Combining impenetrable security, decentral-
ized transactions, and independently verifi able supply

chains, blockchain applications have transformed currency,
digital identity, and logistics. Platforms such as Ethereum and
Hyperledger make it easy to get started by using familiar pro-
gramming languages.

Blockchain in Action teaches you how to design and build
blockchain-based decentralized apps, and is written in a clear,
jargon-free style. First, you’ll get an overview of how block-
chain works. Next, you’ll code your fi rst smart contract using
Ethereum and Solidity, adding a web interface, trust valida-
tion, and other features until your app is ready for deploy-
ment. The only thing you need to get started is standard
hardware and open source software.

What’s Inside
● Blockchain compared with other distributed systems
● Development in Solidity
● Identity, privacy, and security
● On-chain and off-chain data and operations

For programmers who know JavaScript.

Bina Ramamurthy has thirty years of experience teaching dis-
tributed systems, data science, peer-to-peer networking,
and blockchain.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/blockchain-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Blockchain IN ACTION

BLOCKCHAIN/SOFTWARE DEVELOPMENT

M A N N I N G

“A terrifi c introduction to
blockchain that takes you

beyond the lingo to
 understand core concepts.”

—Michael Jensen, Arcadia

“Get a thorough under-
standing of decentralized
systems and their part in

your future design plans.”—Richard B. Ward
Principis Capital

“Go from theory to practice
to implementation with this
excellent guide to navigating

the blockchain maze.”—Sambasiva Andaluri
Amazon Web Services

“A defi nitive source on
blockchain and one of the

few books that covers
blockchain practically.”—Ali M. Sheik Uduman
Harman Connected Services

See first page

	Blockchain in Action
	brief contents
	contents
	Preface
	Acknowledgments
	About this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	About the author
	About the cover illustration
	Part 1: Getting started with blockchain programming
	Chapter 1: Blockchain basics
	1.1 From Bitcoin to blockchain
	1.2 What is a blockchain?
	1.3 Blockchain programming
	1.3.1 Decentralized infrastructure
	1.3.2 Distributed ledger technology
	1.3.3 Disintermediation protocol
	1.3.4 Trust enabler

	1.4 Motivating scenarios
	1.4.1 Automatic and consistent data collection
	1.4.2 Timely information sharing
	1.4.3 Verifiable compliance
	1.4.4 Auditable actions for provenance
	1.4.5 Guidance for governance
	1.4.6 Attribution of actions
	1.4.7 Pandemic management

	1.5 Retrospective
	1.6 Summary

	Chapter 2: Smart contracts
	2.1 The concept of a smart contract
	2.1.1 Bitcoin transactions versus smart contract transactions
	2.1.2 What does a smart contract do?

	2.2 Design of a smart contract
	2.2.1 A use case diagram for the counter
	2.2.2 Data assets, peer participants, roles, rules, and transactions
	2.2.3 From class diagram to contract diagram

	2.3 Development of a smart contract code
	2.3.1 Solidity language
	2.3.2 Smart contract code for Counter

	2.4 Deploying and testing the smart contract
	2.4.1 The Remix IDE
	2.4.2 Deployment and testing
	2.4.3 Key takeaways

	2.5 What makes a blockchain contract smart?
	2.6 Decentralized airline system use case
	2.6.1 ASK definition
	2.6.2 Sequence of operations

	2.7 Airlines smart contract
	2.7.1 Peer participants, data assets, roles, rules, and transactions
	2.7.2 Airlines smart contract code
	2.7.3 ASK smart contract deployment and testing

	2.8 Smart contract design considerations
	2.9 Best practices
	2.10 Summary

	Chapter 3: Techniques for trust and integrity
	3.1 Essentials of trust and integrity
	3.1.1 Trust
	3.1.2 Integrity

	3.2 Digital democracy problem
	3.2.1 Designing a solution
	3.2.2 Use case diagram
	3.2.3 Incremental development of code
	3.2.4 Users, assets, and transactions
	3.2.5 Finite state machine diagram
	3.2.6 Trust intermediation
	3.2.7 Defining and using modifiers
	3.2.8 Contract diagram including modifiers
	3.2.9 Putting it all together

	3.3 Testing
	3.3.1 Positive tests
	3.3.2 Negative tests

	3.4 Using modifiers, require(), and revert()
	3.5 Assert() declarations
	3.6 Best practices
	3.7 Retrospective
	3.8 Summary

	Chapter 4: From smart contracts to Dapps
	4.1 Dapp development using Truffle
	4.1.1 The development process
	4.1.2 Installing Truffle
	4.1.3 Building the Dapp stack

	4.2 Install Ganache test chain
	4.3 Develop the smart contract
	4.3.1 Create a project folder
	4.3.2 Add smart contract and compile
	4.3.3 Configure blockchain network
	4.3.4 Deploy the smart contract

	4.4 Develop and configure the web application
	4.4.1 Develop ballot-app
	4.4.2 Launch the ballot-app
	4.4.3 Install MetaMask wallet
	4.4.4 Interact with Ballot-Dapp
	4.4.5 Connect web client to smart contract

	4.5 Retrospective
	4.6 Best practices
	4.7 Summary

	Part 2: Techniques for end-to-end Dapp development
	Chapter 5: Security and privacy
	5.1 Cryptography basics
	5.1.1 Symmetric key cryptography
	5.1.2 Asymmetric key cryptography

	5.2 The relevance of public-key cryptography to blockchain
	5.2.1 Generating Ethereum addresses
	5.2.2 Transaction signing
	5.2.3 Deploying smart contracts on Ropsten
	5.2.4 Using the private key in mnemonic form
	5.2.5 Populating a blockchain wallet
	5.2.6 Deploying and transacting on Ropsten

	5.3 Hashing basics
	5.3.1 Digital signing of documents
	5.3.2 Hashed data on distributed ledger
	5.3.3 Hashes in Ethereum block header
	5.3.4 Solidity hashing functions

	5.4 Application of hashing
	5.4.1 Blind auction design
	5.4.2 Blind auction smart contract
	5.4.3 Privacy and security aspects
	5.4.4 Testing the BlindAuction contract
	5.4.5 Test plan

	5.5 Retrospective
	5.6 Best practices
	5.7 Summary

	Chapter 6: On-chain and off-chain data
	6.1 On-chain data
	6.2 Blind auction use case
	6.2.1 On-chain event data
	6.2.2 Blind auction with events
	6.2.3 Testing with the web UI
	6.2.4 Accessing on-chain data using the web3 API

	6.3 Off-chain data: External data sources
	6.4 ASK airline system
	6.4.1 ASK concept
	6.4.2 Airlines smart contract
	6.4.3 ASK on-chain data
	6.4.4 ASK off-chain data
	6.4.5 ASK Dapp development process
	6.4.6 ASK web user interface
	6.4.7 Putting it all together
	6.4.8 Interacting with ASK Dapp

	6.5 Retrospective
	6.6 Best practices
	6.7 Summary

	Chapter 7: Web3 and a channel Dapp
	7.1 Web3 API
	7.1.1 Web3 in Dapp stack
	7.1.2 Web3 packages

	7.2 The channel concept
	7.3 Micropayment channel
	7.4 Micropayment channel use case
	7.4.1 Traditional banking solution
	7.4.2 Users and roles
	7.4.3 On-chain and off-chain operations
	7.4.4 MPC smart contract (MPC-contract)
	7.4.5 MPC application development (MPC-app)
	7.4.6 MPC sequence diagram
	7.4.7 Demonstration of MPC execution
	7.4.8 Accessing the web3 provider
	7.4.9 Extensions of MPC
	7.4.10 The relevance of the micropayment channel
	7.4.11 Other web3 packages of interest

	7.5 Retrospective
	7.6 Best practices
	7.7 Summary

	Chapter 8: Going public with Infura
	8.1 Nodes and networks
	8.2 Infura blockchain infrastructure
	8.3 Going public with Infura
	8.3.1 Blockchain node as a service

	8.4 End-to-end process for public deployment
	8.4.1 Account generation and management
	8.4.2 Choosing a network and importing accounts
	8.4.3 Collecting ether from faucets
	8.4.4 Creating blockchain nodes on Infura
	8.4.5 Installing HDWalletProvider
	8.4.6 Configuring and deploying the smart contract
	8.4.7 Configuring and deploying the web application

	8.5 Deploying BlindAuction-Dapp on Infura
	8.5.1 Setting up the blind auction environment
	8.5.2 Decentralized participants
	8.5.3 Configure and deploy the beneficiary account
	8.5.4 Configure and deploy bidders
	8.5.5 Interact with deployed blind auction Dapp

	8.6 Deploying MPC-Dapp on Infura
	8.6.1 Setting up the MPC environment
	8.6.2 Configure and deploy the organizer
	8.6.3 Configure and deploy the worker

	8.7 Retrospective
	8.8 Best practices
	8.9 Summary

	Part 3: A roadmap and the road ahead
	Chapter 9: Tokenization of assets
	9.1 Ethereum standards
	9.1.1 Ethereum improvement proposal
	9.1.2 ERC20 token standard
	9.1.3 Fungible and non-fungible tokens

	9.2 RES4: Non-fungible real estate token
	9.2.1 Use case diagram
	9.2.2 Contract diagram
	9.2.3 RES4 ERC721-compliant token
	9.2.4 RES4 Dapp
	9.2.5 Interaction with RES4 Dapp

	9.3 Retrospective
	9.4 Best practices
	9.5 Summary

	Chapter 10: Testing smart contracts
	10.1 Importance of testing smart contracts
	10.1.1 Types of testing
	10.1.2 Language choice for test programs

	10.2 Testing counter smart contract
	10.2.1 Writing counter test script
	10.2.2 Positive and negative tests
	10.2.3 Running the test script

	10.3 Testing ballot smart contract
	10.3.1 Writing the ballot test script
	10.3.2 Executing the ballot test script
	10.3.3 Describe() and it() test functions

	10.4 Recap writing of test script
	10.5 The blind auction test script
	10.5.1 Analysis of describe() and it() code
	10.5.2 Executing the blind auction test script
	10.5.3 Full auction run

	10.6 Retrospective
	10.7 Best practices
	10.8 Summary

	Chapter 11: A roadmap to Dapp development
	11.1 Motivating scenario: Educational credentialing
	11.2 The roadmap
	11.3 Problem description
	11.3.1 Context for the DCC application
	11.3.2 Design choices

	11.4 Analysis and design
	11.4.1 Operation flow and finite state machine
	11.4.2 Contract diagram

	11.5 Developing the smart contract
	11.5.1 Data structures
	11.5.2 Events
	11.5.3 Modifiers
	11.5.4 Functions

	11.6 Local deployment
	11.7 Automated testing using truffle
	11.8 Developing the web application
	11.8.1 UI design
	11.8.2 Coding the app.js

	11.9 Testing the DCC-Dapp
	11.10 Public deployment
	11.10.1 Deployment on Ropsten-Infura
	11.10.2 Create web-client for distribution

	11.11 Retrospective
	11.12 Best practices
	11.13 Summary

	Chapter 12: Blockchain: The road ahead
	12.1 Decentralized identity
	12.2 Self-managed identity
	12.3 Consensus and integrity
	12.3.1 Proof of work
	12.3.2 Proof of stake
	12.3.3 Byzantine fault-tolerant consensus

	12.4 Scalability
	12.5 Scalability solutions
	12.5.1 Side channel
	12.5.2 Block size
	12.5.3 Network speed

	12.6 Privacy
	12.7 Public, private, and permissioned networks
	12.8 Confidentiality
	12.8.1 Open information
	12.8.2 A solution

	12.9 Security
	12.10 Securing it with cryptocurrency
	12.11 Accessing off-chain data (Oracles)
	12.12 From foundations to practical systems
	12.13 Looking ahead
	12.14 Best practices
	12.15 Retrospective
	12.16 Summary

	appendix A: UML blockchain design models
	A.1 Problem analysis and design
	A.2 Behavioral diagrams
	A.2.1 Use case diagrams
	A.2.2 Finite state machine diagrams

	A.3 Structural diagrams
	A.3.1 Class diagrams
	A.3.2 Classes and relationships

	A.4 Interaction diagrams

	appendix B: Design principles
	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [531.360 666.000]
>> setpagedevice

